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Abstract

Semantic segmentation of point clouds plays a crucial role in 3D scene understanding,
but obtaining large annotated datasets for this task is time-consuming and error-prone.
To address this challenge, weakly supervised learning techniques have been explored,
focusing mainly on the 3D domain while neglecting the potential of incorporating
complementary information from the 2D domain. In this master’s thesis, we adopt
an approach that integrates both 2D images and 3D point clouds to enhance weakly
supervised point cloud semantic segmentation. By bidirectionally interacting features
from these modalities, we leverage the fine-grained texture in 2D images and the geo-
metric information in 3D point clouds to benefit each other. To incorporate additional
supervisory signals, we begin by oversegmenting the point clouds and images and
assigning unique labels to the resulting supervoxels and superpixels based on our
proposed initial label assignment strategy. We then propagate these labels to unlabeled
points or pixels within the corresponding supervoxel or superpixel. However, the
oversegmented regions suffer from imprecise object boundaries, leading to inaccu-
racies in the propagated labels and label noise. To address this issue, we introduce
a novel noise-robust framework that integrates robust loss functions and innovative
loss adjustment strategies. These techniques enhance the learning capacity of the
network and enable robust learning with limited annotations. Additionally, we incor-
porate multi-modality and develop a novel point/pixel-wise confidence calculation
algorithm in the oversegmented point clouds and images to obtain reliable labels based
on distance metrics. This approach effectively handles challenges related to ambigu-
ous object boundaries and significantly improves the robustness of the framework
even with sparse labels. We conduct extensive experiments under various weakly
supervised schemes on benchmark datasets, including ScanNetV2 and 2D-3D-S. The
results demonstrate that our noise-robust framework outperforms baseline methods
both quantitatively and qualitatively, showcasing its effectiveness in addressing the
limitations of weakly supervised point cloud semantic segmentation.
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1 Introduction

1.1 Problem Statement and Motivation

The task of 3D scene understanding, which involves extracting semantic and geometric
information from a three-dimensional scene, is crucial and challenging in computer
vision. Recent advancements in computer vision and deep learning have led to signif-
icant progress in 3D scene understanding, enabling applications such as augmented
reality, scene modeling, autonomous vehicles, and robotics [1]. Semantic segmentation,
a fundamental component of 3D scene understanding, aims to assign semantic labels
to each point in a 3D point cloud.

While substantial progress has been made in fully supervised semantic segmentation
using large annotated datasets [2, 3, 4], the manual annotation of 3D point cloud datasets
remains a time-consuming and error-prone task, presenting a significant challenge.
Annotating a single indoor scene dataset, for example, can take approximately 22.3
minutes [5]. Thus, there is an urgent need to reduce the annotation overhead and
develop efficient methods for 3D point cloud annotation.

To address the annotation costs, weakly supervised learning techniques have been
explored, focusing on utilizing limited supervision for 3D point clouds. Weak supervi-
sory signals, such as point annotations or scene-level and sub-cloud annotations, have
been proposed as alternative forms of supervision [6, 7, 8, 9, 10]. However, effective
and efficient methods for reducing the annotation overhead in weakly supervised 3D
point cloud semantic segmentation remain an open research question.

Label propagation, a crucial technique to enhance the supervision signal in weakly
supervised semantic segmentation, has been employed in recent state-of-the-art studies
using oversegmentation techniques [11, 12]. However, these approaches primarily lever-
age 3D data, overlooking the potential of incorporating complementary information
from 2D images. In this work, we propose an approach for weakly supervised semantic
segmentation of point clouds by oversegmenting both the point clouds and correspond-
ing 2D images. By generating supervoxels and superpixels, we group geometrically
related points or pixels and assign initial labels based on a proposed strategy. We
then extend these labels to unlabeled points within the supervoxels and superpixels,
enriching the training data with additional supervised signals.

It is important to address the inherent noise and lack of well-defined object bound-

1



1 Introduction

aries in oversegmented point clouds and images. Due to ambiguous object boundaries,
points or pixels belonging to different objects may reside within the same supervoxel
or superpixel, leading to inaccuracies in propagated labels. The presence of noisy
propagated labels poses challenges for deep learning models, which are sensitive to
biases introduced during training. Thus, careful consideration and mitigation of the
effects of noisy labels are crucial during the training process.

While existing studies have focused on learning with label noise in fully supervised
scenarios, mostly in the context of image classification [13, 14, 15], limited work has been
done on learning with noisy labels for robust point cloud semantic segmentation [16].
These studies propose techniques such as loss correction, loss reweighting, and label
refurbishment.

In our work, we specifically address the problem of label noise in weakly supervised
semantic segmentation caused by label propagation in oversegmented point clouds
and images with inaccurate object boundaries. To tackle this challenge, we propose a
novel robust framework that integrates both 2D images and 3D point clouds, introduc-
ing innovative techniques for robust loss adjustment while reducing the annotation
overhead.

1.2 Proposed Methodology Overview and Contributions

To the best of our knowledge, this is the first investigation into addressing the issue of
noisy labels in oversegmented point clouds and images within the context of weakly
supervised semantic segmentation.

To tackle the challenge of noisy labels, we employ a backbone architecture that
leverages complementary information from both 2D images and 3D point clouds. By
integrating these modalities, our approach captures geometric information from 3D
features and color/texture characteristics from 2D features. Additionally, we investigate
domain-specific loss functions within our robust framework and introduce novel loss
adjustment methods to handle the presence of noisy labels in oversegmented point
clouds and images, enhancing the learning capacity of the network and enabling robust
learning.

The contributions of this thesis can be summarized as follows:

• We propose a novel robust framework for weakly supervised 3D semantic seg-
mentation that enables the network to learn robust representations from noisy
oversegmented point clouds and images.

• We incorporate multi-modality into our framework, enhancing label propagation
by leveraging geometric features from 3D data and color/texture information
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1 Introduction

from 2D features. This integration increases the network’s resilience to noisy
labels.

• We extensively investigate different robust loss functions to handle label noise
in oversegmented point clouds and images and improve the network’s learning
capacity, avoiding biased learning. The most suitable loss function is integrated
into our proposed robust framework.

• We introduce an additional level of granularity into the semantic segmentation
process through novel loss adjustment methods, specifically loss reweighting. This
technique effectively mitigates the negative impact of noisy labels by adjusting
the loss of all training examples before updating the neural network. By assigning
appropriate weights based on distance metrics, we address challenges such as
noise, occlusion, and accurate delineation of complex object boundaries.

• We conduct extensive experiments on the ScanNetV2 [5] and 2D-3D-S [17] datasets,
which is a superset of S3DIS [18] under different weakly-supervised annotation
strategies. Our benchmark evaluations demonstrate significant improvements
over baselines, both quantitatively and qualitatively.

Through our quantitative and qualitative evaluations, we demonstrate that our pro-
posed framework achieves robustness against label noise caused by label propagation
in oversegmented point clouds and images with inaccurate object boundaries.

1.3 Thesis Outline

The remaining sections of the thesis are structured as follows:
Chapter 2 introduces the key concepts necessary for understanding the subsequent

chapters.
Chapter 3 presents an extensive review of the existing literature in the field. We

discuss the state-of-the-art techniques and methodologies related to semantic seg-
mentation, label propagation, robust learning, and handling noisy labels in various
domains.

Chapter 4 describes our proposed framework in detail. We present the architecture,
including the integration of multi-modal information from 2D images and 3D point
clouds, label propagation techniques, and the novel loss adjustment methods employed.

Chapter 5 provides a comprehensive evaluation of our framework, comparing its
performance to state-of-the-art methods on benchmark datasets and conducting detailed
ablation studies to analyze the contributions of individual components.

3



1 Introduction

Chapter 6 summarizes our findings and contributions, emphasizing the key contri-
butions of our research, and suggests future research directions to advance the field
and tackle remaining challenges.
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2 Background

This chapter provides an overview of the key concepts necessary for comprehending
the subsequent chapters. It introduces and explains fundamental concepts in the fields
of semantic segmentation, oversegmentation, robustness, and deep learning with label
noise.

2.1 Semantic Segmentation

Semantic segmentation is a fundamental task in the field of computer vision, aimed at
accurately dividing images and point clouds into semantically meaningful regions. It
holds great significance in various domains, including augmented reality, autonomous
driving, and medical image analysis. The primary objective of semantic segmentation
is to assign semantic labels, such as "table" or "chair," to individual pixels or points.
Extensive research efforts have been dedicated to developing techniques for semantic
segmentation in both 2D images and 3D point clouds.

Figure 2.1: A fully convolutional image segmentation network, figure from [19].

In the domain of semantic image segmentation, a significant breakthrough was
achieved with the introduction of Fully Convolutional Networks (FCNs) by [19]. FCNs
demonstrated the potential of deep learning methods by enabling end-to-end training
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2 Background

on images. Unlike traditional networks that employ fully connected layers, FCNs
are specifically designed to make dense predictions for per-pixel tasks like semantic
segmentation. This is achieved by replacing the final dense layers with convolutional
layers, allowing the network to directly output a segmentation map, as depicted in
Figure 2.1.

U-Net [20] is another prominent architecture for semantic image segmentation. It
adopts an encoder-decoder framework, consisting of an encoder that captures strongly
correlated semantic information and a decoder that utilizes additional intermediate
layers to propagate this information. By integrating skip connections, the U-Net
architecture efficiently recovers spatial details, leading to accurate segmentation results.

In the domain of 3D point cloud semantic segmentation, PointNet [2] was intro-
duced, a groundbreaking method for processing unordered point clouds. PointNet is
specifically designed to handle the challenges posed by unordered point cloud data
and learn per-point features using shared Multi-Layer Perceptrons (MLPs). Addition-
ally, PointNet incorporates symmetrical pooling functions to capture global features,
enhancing the network’s ability to capture comprehensive information from the point
cloud. Building upon PointNet, several point-based networks have been proposed,
utilizing modules like T-Net for point cloud alignment and shared MLPs for per-point
feature extraction, as illustrated in Figure 2.2.

Figure 2.2: PointNet architecture for 3D point cloud semantic segmentation, figure
from [2].

It is important to note that while both image semantic segmentation and 3D point
cloud semantic segmentation share the common goal of predicting class labels for
individual pixels or points, they possess inherent differences in data structure and
representation. These differences give rise to unique challenges, necessitating tailored
approaches for each domain.
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2 Background

By gaining a comprehensive understanding of the advancements and techniques
in semantic segmentation for both images and point clouds, we can leverage this
knowledge to develop effective and efficient methodologies for weakly supervised
semantic segmentation. This is particularly relevant in scenarios involving noisy
oversegmented point clouds and images, where precise and reliable segmentation is of
utmost importance.

2.2 Minkowski Convolutional Neural Network

In various real-world applications, such as robotics, virtual reality, augmented images,
and medical imaging, the acquisition of 3D scans is crucial. These scans are typically
obtained using Light Detection and Ranging (LiDAR) scanners and Magnetic Resonance
Imaging (MRI) scanners. However, when dealing with 3-dimensional scans or higher-
dimensional spaces, the use of dense representations becomes inefficient due to the
sparsity of the data. While certain data, like images, naturally exhibit denseness, other
sources, such as 3D point clouds captured by LiDAR scanners or RGB-D cameras,
inherently possess sparsity. Point clouds differ from regular images as they are sparse
data structures, with most voxels being empty in 3D space. Consequently, traditional
"dense" convolutional networks are highly inefficient when applied to such sparse data.

To tackle this challenge, [21] proposed the Minkowski Engine. The Minkowski Engine
serves as an auto-differentiation framework that supports sparse tensors, enabling
training and evaluation with varying numbers of points in each object.

This work adopts sparse tensors due to their expressiveness and generalizability in
high-dimensional spaces. A sparse tensor transforms an input into unique coordinates,
associated features, and optionally labels for semantic segmentation during training.
This representation extends the concept of a sparse matrix to N-dimensional spaces. In
the Minkowski Engine, the Coordinate list (COO) format is employed to store sparse
tensors due to its efficiency in neighborhood queries.

In addition to the COO format, the Minkowski Engine introduces various operations,
including generalized sparse convolution, sparse tensor quantization, max pooling,
global average pooling, sum pooling, and non-spatial functions. The generalized sparse
convolution encompasses not only sparse convolutions but also conventional dense
convolutions.

The flexibility of the generalized sparse convolution allows for arbitrary strides
and kernel shapes, facilitating the creation of high-dimensional networks solely us-
ing generalized sparse convolutions. This simplifies implementation and promotes
generalizability. Additionally, recent architectural innovations in 2D networks can be
directly adopted for high-dimensional networks. For U-shaped variants, the authors
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2 Background

add multiple strided sparse convolutions and strided sparse transpose convolutions
with skip connections to the base residual network [22], as illustrated in Figure 2.3.

Figure 2.3: Architecture of MinkowskiUNet32, figure from [21].

2.3 Oversegmentation

Oversegmentation is a fundamental technique extensively employed in computer
vision, particularly in the domains of image and point cloud semantic segmentation. Its
primary objective is to group pixels or points into coherent regions that align with object
boundaries. Within the context of oversegmentation, two key concepts are utilized:
superpixels for images and supervoxels for point clouds. These concepts serve as
compact representations of regions in 2D images and 3D point clouds, respectively.

The utilization of superpixels and supervoxels offers several advantages in the field
of computer vision. Firstly, they enable region-based operations, such as feature
computation, to be performed on cohesive regions rather than on scattered pixels or
points. This region-based approach enhances computational efficiency by reducing the
number of primitives that need to be processed, leading to improved performance of
vision algorithms. By reducing the complexity of the data representation, superpixels
and supervoxels facilitate tasks such as object detection and semantic segmentation [23].

2.3.1 Superpixels

Superpixels are crucial components in image processing, providing a more efficient
and meaningful representation of image content through the division of an image
into small, homogeneous, and regular regions based on their low-level properties [24].
Superpixels possess desirable properties such as homogeneity, connected partition, and
regularity, enabling them to overcome the limitations of pixel discretization and reduce
computational complexity.
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2 Background

One approach for generating superpixels is through graph-based algorithms. These
algorithms treat the image as a planar graph, with pixels serving as vertices and edges
representing the connectivity between adjacent pixels. By formulating superpixel
generation as a graph-partitioning problem and analyzing the strength of connectivity
between pixels, these algorithms effectively partition the graph to obtain cohesive and
visually meaningful superpixels.

Another approach for superpixel generation is clustering-based algorithms, which
leverage the relative positions of pixels to create cohesive regions. These algorithms
employ clustering techniques like k-means to iteratively refine an initial pixel clustering
until specific criteria, determined by the algorithm, are met. This iterative refinement
process ensures the generation of cohesive superpixels.

One notable clustering-based algorithm for superpixel generation is the Simple Linear
Iterative Clustering (SLIC) algorithm [25]. SLIC is an efficient method that adapts the
k-means algorithm to oversegment an image into a regular grid. By computing average
color and position features for each superpixel and iteratively reassigning pixels to the
most similar superpixel, SLIC achieves connected and visually coherent superpixels. A
post-processing step further ensures the connectedness of disjoint pixel sets. SLIC offers
linear complexity based on the number of pixels and employs a distance metric that
combines spatial position and intensity information, resulting in compact superpixels
that adhere well to image contours. Its computational speed and ability to produce high-
quality results make SLIC suitable for large-scale image analysis and high-resolution
models.

In recent years, deep learning methods have shown promise in developing supervised
superpixel oversegmentation approaches. One such method is the Superpixel Sampling
Network (SSN) [26], which provides an end-to-end trainable solution for learning task-
specific superpixels. SSN addresses the challenge of non-differentiability in existing
superpixel algorithms by proposing a differentiable algorithm based on SLIC. By
relaxing the nearest neighbor constraints present in SLIC, the modified algorithm
enables end-to-end training and leverages the power of deep networks for learning
superpixels. SSN combines the pixel-wise features obtained from the deep network with
the differentiable SLIC, allowing iterative clustering to generate the desired superpixels.
This approach facilitates the utilization of flexible loss functions and ensures efficient
runtime, offering a novel solution for supervised superpixel oversegmentation.

The field of superpixel generation encompasses various approaches, including graph-
based and clustering-based algorithms. SLIC and SSN are two prominent methods that
have demonstrated effectiveness and efficiency in producing high-quality superpixels
while ensuring adherence to object boundaries. Figure 2.4 presents the visual results of
SLIC and SSN applied to a 2D image from ScanNetV2 dataset [5].
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2D Image SLIC [25] SSN [26]

Figure 2.4: Comparison results for different superpixel algorithms applied to a 2D
image from the ScanNetV2 dataset [5], showcasing their performance in
generating superpixel representations.

2.3.2 Supervoxels

Supervoxels are small regions composed of perceptually similar voxels within 3D point
clouds, similar to the concept of superpixels in 2D images. The task of oversegmenting
3D point clouds into supervoxels poses a significant challenge due to the unordered
nature and irregular distribution of points in 3D space [27].

To ensure effective generation of supervoxels in 3D point clouds, several properties
are considered. Spatiotemporal uniformity, also referred to as conservatism, aims
to create compact and uniformly shaped supervoxels in both spatial and temporal
dimensions, maintaining consistency and regularity within the supervoxel regions [27].

Another crucial property is spatiotemporal boundaries and preservation. It is im-
portant for supervoxel boundaries to align with object or region boundaries when
present and remain stable in the absence of clear object boundaries. This ensures
that supervoxels accurately capture the spatial and temporal boundaries of objects or
regions within the point cloud [27].

Moreover, the oversegmentation process into supervoxels should not compromise the
overall performance of the application. Maintaining the desired level of accuracy and
performance is essential during the division of the point cloud into supervoxels, ensur-
ing that the supervoxel representation does not degrade the system’s performance [27].

In the context of oversegmenting point clouds into supervoxels, several studies
have been conducted. The Voxel Cloud Connectivity Segmentation (VCCS) [28] and
Boundary-Enhanced Supervoxel Segmentation (BESS) [29] algorithms are prominent
works that leverage the 3D geometry of the scene. VCCS employs a cluster-based
method based on the k-means algorithm and octrees for point cloud voxelization as ini-
tial steps. On the other hand, BESS proposes a two-stage supervoxel oversegmentation
approach, incorporating a graph-structured method to preserve object shapes and a
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boundary detection technique.
While VCCS and BESS rely on hand-crafted geometric features, a deep learning-based

approach called Supervized SuperPoint (SSP) [30] presents a supervised framework for
oversegmenting 3D point clouds. SSP utilizes a lightweight neural network to learn
deep embeddings of local geometry, emphasizing high contrast at object boundaries.
These embeddings are computed based on the local neighborhood of points, and the
point cloud oversegmentation is formulated as a graph partition problem using the
learned embeddings. In our methodology, we employed VCCS as an unsupervised and
efficient method for oversegmenting point clouds in a weakly supervised setting. The
oversegmentation results for VCCS and SSP can be observed in Figure 2.5.

Original point cloud SSP [30] VCCS [28]

Figure 2.5: Comparison results for different supervoxel algorithms, including SSP and
VCCS, applied to a 3D point cloud from the ScanNetV2 dataset [5], illustrat-
ing their effectiveness in generating supervoxel representations.

2.4 Robustness

Robustness, as defined by the [31], refers to the degree to which a system or component
can operate correctly in the presence of invalid inputs or challenging environmental
conditions. In the computer vision field, robustness encompasses various aspects,
including the ability to maintain performance on manipulated or modified inputs,
generalize across different domains, and resist adversarial attacks [32].

Robustness is a relative measure of model performance rather than an absolute one.
When considering robustness, it is essential to take into account the characteristics of
data corruption, the design and optimization of the model to mitigate such corruptions,
and the evaluation methods used to assess performance [32].

In the context of deep learning methods for computer vision, robustness plays a
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crucial role in evaluating model performance and ensuring their ability to handle
various factors that can impact predictions. One such factor is adversarial attacks,
where neural networks trained on specific datasets can be deceived by inputs that are
subtly different from the training data [33].

Another factor that affects the robustness of deep learning models is label noise,
which arises from misclassification of labels. Label noise can arise from various sources,
such as distributional shifts, errors in data entry, insufficient data descriptions for class
labeling, decisions made by non-experts, and instances that lie near the boundaries of
different classes [34].

By addressing these factors, deep learning models can be evaluated and designed to
be robust to these challenging conditions, ultimately enhancing their practical utility
and reliability in real-world applications.

2.5 Deep Learning with Label Noise

Deep learning with label noise is an important aspect to consider in the context of
semantic segmentation. In the task of semantic segmentation, ground truth labels play
a crucial role as they provide the model with the necessary information to learn the
probability of assigning each point/pixel in a point cloud/image to a specific class.
While fully supervised scenarios with rich ground truth labels are ideal, the process of
obtaining accurate ground truth labels is prone to human errors, leading to potential
label noise and subsequent impact on the model’s performance. Moreover, accurate
labeling requires domain expertise, as observed in fields like medical imaging and
scene understanding, and can be time-consuming. Additionally, since different experts
may have varying interpretations, it is often necessary to reach an agreement on the
labels or combine annotations from multiple sources, which can be costly [35].

Labeling 3D datasets poses additional challenges compared to 2D images. The
larger number of points in 3D datasets requires extensive labeling efforts, and the
dynamic nature of 3D geometry, including changing views, positions, and scales,
further complicates the annotation process [16]. Annotators must possess specialized
expertise and a comprehensive understanding of the structure to accurately label 3D
data. As a result, 3D labeling is more susceptible to errors, leading to label noise
as demonstrated in Figure 2.6, where ScanNetV2 [5] exhibits label noise, such as
mislabeling the floor as a chair.

In the context of sparse label settings, where only a limited number of ground truth
labels are available, the impact of label noise becomes even more noticeable compared
to fully supervised scenarios. To address the challenge of limited labels, state-of-the-art
weakly supervised segmentation models [11, 12] often utilize oversegmentation tech-
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Input Scenes Noisy Ground Truth Labels

Figure 2.6: Illustration of the label noise in the context of point cloud semantic segmen-
tation on the ScanNetV2 dataset [5]. The input scenes show noisy instances
(highlighted with red boxes), and the ground truth semantic annotation
exhibits label noise, such as mislabeling the floor as a chair or mislabeling a
cabinet as a bed, figure from [16].

Figure 2.7: Illustration of label noise arising from oversegmentation in the context of
sparse label settings on the ScanNetV2 dataset [5]. The red circle highlights
an example where the unknown region is mistakenly labeled as a table
instead of a wall, emphasizing the presence of label noise in oversegmented
point cloud.
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niques. These techniques aim to propagate the sparse labels to supervoxels, providing
larger labeled regions for training. However, it is important to note that oversegmenta-
tion may not consistently align with object boundaries, leading to label errors within the
oversegmented regions, as illustrated in Figure 2.7. Such label noise within supervoxel
boundaries can significantly impact the accuracy of segmentation results, particularly
when objects are wrongly labeled within the supervoxel.

Nevertheless, striking a balance between effectively handling label noise and pre-
serving the discriminative information within labeled data is crucial. Recognizing the
detrimental impact of label noise, robust techniques have been proposed to enhance the
model’s resilience to label noise and mitigate its negative effects. These techniques aim
to ensure that the propagated labels accurately capture the underlying semantics of the
scene while reducing the influence of label noise. By incorporating robust strategies,
deep learning models can overcome the challenges posed by label noise, ultimately
improving the accuracy and reliability of semantic segmentation results. These robust
strategies can be categorized into five different methods [36]: robust architecture, robust
regularization, robust loss function, loss adjustment, and sample selection.

2.5.1 Robust Architecture

The concept of robust architecture is focused on developing training methods that
enhance the resilience of deep neural networks against label noise. The primary
objective is to introduce architectural modifications to the neural network, such as the
incorporation of a noise adaptation layer, to achieve this goal effectively.

One prominent approach in implementing a robust architecture involves the utiliza-
tion of a noise layer, as proposed by [37]. This layer generates a transition matrix that
captures the relationship between noisy and true labels, facilitating the modeling of the
noise transition process. The noise adaptation layer expresses the posterior probability
of a noisy class as a weighted sum of the posterior probabilities of the true classes,
where the weights are determined based on the noise transition matrix.

Researchers have explored various methods for integrating it with different network
architectures. For instance, [38] proposed the Robust Conditional GAN (RCGAN),
which incorporates a noise layer within a generative adversarial network (GAN) frame-
work. This integration harnesses the power of GANs in generating realistic data
while leveraging the noise adaptation layer’s ability to handle label noise, resulting in
improved robustness.

Another notable study by [39] introduced an expectation-maximization (EM) algo-
rithm specifically designed to optimize the parameters of the noise layer. By refining
the performance of the noise adaptation layer, this algorithm enhances its capacity to
accurately model the noise transition process.
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2.5.2 Robust Regularization

Robust regularization encompasses a range of techniques designed to enhance the
generalizability of deep neural networks when faced with label noise. These techniques
can be classified into two categories: explicit and implicit regularization methods.

Explicit regularization techniques are specifically designed to constrain the effective
capacity of a model, thereby improving its generalization performance [40]. Weight
decay [41], is an example of explicit regularization. It reduces overfitting in feed-
forward neural networks by penalizing large weight values. By choosing the smallest
weight vector that solves the learning problem, weight decay effectively suppresses
irrelevant components of the weight vector, promoting improved generalization.

Another explicit regularization technique is dropout [42]. During training, dropout
randomly deactivates units, reducing the network’s sensitivity to individual noisy
labels. By explicitly controlling the model’s capacity, dropout helps prevent overfitting
to noisy labels, leading to enhanced robustness.

Implicit regularization, on the other hand, achieves regularization effects without
explicitly modifying the loss function or constraining the model’s capacity [40]. Data
augmentation [43], is an example of an implicit regularization technique. It introduces
random transformations, such as rotations or translations, to the training data, in-
creasing its diversity. This augmented data helps the model learn more robust and
generalized representations, improving its ability to handle label noise and unseen
data.

Mini-batch stochastic gradient [44] is another implicit regularization technique widely
used in training deep neural networks. It involves randomly sampling a subset of
the training data for each iteration, introducing stochasticity into the optimization
process. This randomness prevents the model from overfitting to specific examples and
promotes generalization.

By combining both explicit and implicit regularization techniques, researchers aim to
enhance the robustness and generalizability of deep neural networks in the presence
of label noise. These techniques provide effective mechanisms to control the model’s
capacity, increase data diversity, and introduce stochasticity into the training process,
ultimately improving the network’s ability to handle label noise and generalize well to
unseen data.

However, as depicted in Figure 2.8, the application of these regularization techniques
alone does not sufficiently improve test accuracy. A notable accuracy difference persists
between models trained with noisy labels and those trained with clean labels.
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Figure 2.8: Comparison of convergence curves for training and test accuracy of a clas-
sification network on the CIFAR-100 dataset [45], showcasing the impact
of regularization techniques on models trained with noisy and clean labels.
The curves demonstrate the performance of models trained without regular-
ization on noisy data ("Noisy w/o Reg."), models trained with regularization
on noisy data ("Noisy w. Reg."), and a model trained with regularization on
clean data ("Clean w. Reg."), figure from [36].

2.5.3 Robust Loss Functions

In addition to robust architecture and robust regularization techniques, the choice of a
robust loss function provides another approach to effectively handle label noise during
the training of deep neural networks.

The loss function plays a fundamental role in guiding the learning process of a deep
neural network by minimizing the discrepancy between its predictions and the ground
truth labels. In the presence of label noise in the training dataset, employing a robust
loss function becomes desirable over non-robust alternatives.

A robust loss function is specifically designed to be less sensitive to outliers or noisy
data points present in the training set. It aims to mitigate the adverse effects that
extreme values may have on the learning process and the overall performance of the
model.

In the context of semantic segmentation, the selection of an optimal loss function for a
network does not follow a fixed rule, as it heavily depends on the network architecture
and the characteristics of the input data.

The Dice loss [46], Focal loss [47], and Tversky loss [48] are examples of robust loss
functions commonly employed in semantic segmentation tasks. These loss functions
exhibit robustness by effectively handling class imbalance, capturing spatial context,
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adapting loss contributions based on prediction confidence, and allowing control over
the trade-off between false positives and false negatives.

2.5.4 Loss Adjustment

In addition to robust architecture, robust regularization techniques, and robust loss
functions, loss adjustment methods provide another effective strategy to mitigate the
influence of label noise during the training of deep neural networks. These methods aim
to reduce the negative impact of noisy labels by modifying the loss of training examples
before updating the neural network parameters [36]. Loss adjustment methods can be
categorized into four groups: loss correction, loss reweighting, label refurbishment, and
meta-learning.

1. Loss Correction: Loss correction methods estimate the noise transition matrix
and incorporate it into the loss computation for each training example, thereby
adjusting the loss [36]. By considering the noise characteristics, these methods
effectively account for label noise and mitigate its influence during the learning
process. The noise transition matrix provides insights into the probabilities of
label transitions and guides the adjustment of the loss values, leading to improved
robustness to label noise.

2. Loss Reweighting: Loss reweighting methods assign different levels of impor-
tance or confidence to each training sample based on the likelihood of having
correct labels [36]. The objective is to down-weight samples that are more likely to
have incorrect labels while assigning greater weights to examples with true labels.
This approach acknowledges the presence of label noise and aims to give more
emphasis to reliable examples, thereby reducing the impact of noisy instances.
By adjusting the loss weights accordingly, these methods promote learning from
trustworthy samples and improve the robustness of the training process. In
our methodology, we also introduce various algorithms for loss reweighting to
enhance the resilience to label noise.

3. Label Refurbishment: Label refurbishment methods modify the loss by incorpo-
rating the refurbished label, which is obtained through a convex combination of
the noisy label and the predicted label [36]. Instead of directly using the noisy
label for loss computation, this approach backpropagates the loss computed using
the refurbished label, which incorporates the model’s prediction.

4. Meta-learning: Meta-learning is a loss adjustment approach that focuses on
automatically inferring the optimal rule for loss adjustment [36]. It involves
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learning to learn at a higher level, which goes beyond conventional learning.
Meta-learning aims to discover data-agnostic and noise type-agnostic rules for
loss adjustment.

2.5.5 Sample Selection

Sample selection strategies serve as a robust solution to address the challenges arising
from label noise in training datasets. These strategies aim to identify true-labeled
examples while mitigating the inclusion of corrupted labels by leveraging collaborative
efforts from multiple networks or adopting multi-round learning techniques [36].

However, it is crucial to acknowledge that although learning with sample selection
is a well-motivated approach with proven effectiveness, it is not enduring to the
accumulation of errors stemming from incorrect selection, particularly in the presence
of datasets comprising numerous ambiguous classes.
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This chapter provides a comprehensive review of the current literature in the field. We
explore the latest techniques and methodologies concerning semantic segmentation,
label propagation, robust learning, and handling noisy labels across different domains.

3.1 Fully Supervised Semantic Segmentation

Semantic segmentation is a fundamental and challenging task in scene understanding,
aiming to assign class labels to each pixel or point in an image or point cloud. Fully
supervised semantic segmentation, as a widely explored concept in this domain, has
attracted considerable attention in academic research and has been applied to various
practical applications.

Fully supervised semantic segmentation encompasses a diverse range of method-
ologies that operate on different types of input data. One common approach focuses
on RGB data, where deep learning architectures are trained to classify individual
pixels in 2D images with class labels. These methods leverage convolutional neu-
ral networks (CNNs) [49] to extract informative features from RGB images, enabling
pixel-level classification.

Another avenue of exploration within fully supervised semantic segmentation in-
volves the use of point cloud data. Point clouds, obtained from 3D sensors, provide a
rich representation of the environment and enable the inference of fine-grained object
boundaries. Deep learning techniques tailored for point cloud semantic segmentation
have been developed to accurately segment objects and scenes in three-dimensional
space, thereby extending the scope of semantic segmentation to 3D data.

Furthermore, there is a growing interest in combining RGB and depth information,
commonly referred to as RGB-D data, for semantic segmentation tasks. These ap-
proaches leverage the complementary nature of RGB and depth data, enabling the
extraction of both appearance-based and geometric cues for improved segmentation ac-
curacy. By jointly analyzing RGB and depth information, these methods aim to capture
richer contextual information and enhance the understanding of complex scenes.

In addition to single-modal data analysis, fully supervised semantic segmentation
also extends to multi-modal data fusion. This involves the integration of data from
multiple sources, such as RGB images, point clouds, and depth maps, to achieve
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a comprehensive understanding of the scene. By fusing information from different
modalities, these techniques aim to exploit the strengths of each modality and mitigate
their individual limitations, ultimately improving the quality of semantic segmentation
results.

The exploration of fully supervised semantic segmentation methods across various
data modalities highlights the ongoing research efforts in the field of scene understand-
ing. By leveraging RGB, point cloud, RGB-D data, and incorporating multi-modal
fusion techniques, researchers strive to advance the state-of-the-art in semantic segmen-
tation and enable more accurate and robust scene interpretation.

3.1.1 Fully Supervised 2D Semantic Segmentation

2D semantic segmentation involves the task of assigning class labels to individual
pixels in 2D images. Several notable approaches have been proposed in the litera-
ture, leveraging deep learning techniques to achieve accurate and efficient pixel-wise
segmentation.

One influential method in this field is FCNs [19] , which introduced the concept of
converting classification networks, such as AlexNet[50] and VGGNet [51], into fully
convolutional networks. By replacing fully connected layers with convolutional layers,
FCNs enable end-to-end training for pixel-to-pixel semantic segmentation, preserving
spatial information and producing dense segmentation maps.

The Deconvolution Network [52] proposed a semantic segmentation algorithm that
utilizes a deconvolution network trained on top of a VGG-based convolutional network.
This approach focuses on recovering spatial information and refining object boundaries
through deconvolutional layers. Similarly, U-Net [20] and SegNet [53] introduced
encoder-decoder architectures for 2D semantic segmentation, enabling the learning of
both low-level and high-level features to extract fine-grained details.

To address the issue of poor localization properties in deep networks, DeepLab [54]
combined deep convolutional neural networks with a fully connected conditional ran-
dom field (CRF). This integration improved the localization accuracy of segmentation
results by capturing long-range dependencies. Moreover, dilated convolutions, as
demonstrated by [55], have been employed to aggregate multi-scale contextual infor-
mation without sacrificing resolution or coverage. By allowing the network to access
a broader context, these dilated convolutions enhance segmentation accuracy while
preserving spatial details.

Global context information has also been leveraged to improve the performance of
2D semantic segmentation. Methods like ParseNet [56] and PSPNet [57] exploit the
capability of global context information to enhance segmentation accuracy. Attention
mechanisms have emerged as a powerful tool for capturing long-range contextual
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information in a flexible and adaptive manner. For example, EncNet [58] and CCNet [59]
utilize attention mechanisms to dynamically weight the contributions of different spatial
locations based on their contextual relevance, effectively enhancing the discriminative
power of the network.

3.1.2 Fully Supervised 3D Semantic Segmentation

The field of 3D semantic segmentation has witnessed significant advancements, with
various methods categorized based on the data representations they employ. These
categories include point-based methods, voxel-based methods, and 2D-projection-
based methods, each offering unique approaches to tackle the challenges of 3D scene
understanding.

Point-based methods, PointNet [2], PointNet++ [60], leverage MLPs architectures for
3D scene understanding by directly operating on the individual points of a point cloud.
To enhance the capabilities of point-based methods, convolution-based approaches,
including PointCNN[4], KPConv [61], PointConv [62], and FPConv [63], introduce
convolution operations tailored for point cloud data, enabling effective local feature
extraction.

Another category of point-based methods focuses on enhancing local region features.
Examples of such methods include SpiderCNN [64], DGCNN [65], PointWeb [66], and
RandLA-Net [67]. These approaches leverage local neighborhoods and hierarchically
aggregated features to capture fine-grained details in point clouds.

Attention-based aggregation techniques have also been employed in point-based
methods to improve semantic segmentation performance. Methods such as Attentional
ShapeContextNet (A-SCN) [68], PCAN [69], and Point Attention Transformers (PATs) [70]
utilize attention mechanisms to dynamically weight the contributions of different points
based on their contextual relevance, enhancing the discriminative power of the network.

Graph construction methods have also been explored in fully supervised 3D semantic
segmentation. Graph Attention Convolution (GAC) [71], and Hierarchical Point-Edge
Interaction Network [72] are examples of techniques that leverage graph structures to
model relationships between points. However, despite their promising results, these
point-based methods face challenges in directly scaling to large scenarios due to their
high computational and memory requirements.

Voxel-based networks have emerged as an efficient approach for handling large-scale
point cloud data by discretizing the 3D space into regular voxel grids. Notable voxel-
based methods include VoxNet [73], SegCloud [3], and OctNet [74]. Voxel grids offer
a structured representation and enable the application of 3D convolutions. However,
voxel-based methods may suffer from empty voxels due to the sparsity of point clouds,
resulting in redundant computations and limited efficiency.

21



3 Related Work

Another approach in 3D semantic segmentation is 2D-projection-based methods,
which leverage the multi-view mechanism by projecting unstructured 3D points onto
2D images captured from different camera views. These methods exploit the rich
information present in 2D images and perform semantic segmentation in the projected
space. Various methods have been developed in this category, including Multi-view
CNN [75], Volumetric and Multi-View CNNs [76], and SalsaNet [77]. Compared to
voxel and point-based approaches, 2D projection methods offer more compact and
dense representations, enabling real-time computations, but they may suffer from
information loss caused by the projection process.

Recent advancements in fully supervised 3D semantic segmentation have been made
by Submanifold Sparse Convolutional Networks (SSCN) [78] and OccuSeg [79]. These
methods employ sparse 3D voxel grids and utilize sparse 3D convolutions to extract
features. They excel in recognizing 3D patterns and demonstrate strong performance for
objects with distinctive 3D shapes, such as chairs. However, they may face challenges
when dealing with other types of objects, such as pictures, and require significant
memory resources, which limit spatial resolutions and batch sizes. Notably, Minkowski
Convolutional Neural Networks [21] introduce a novel 4D sparse convolution approach
for spatio-temporal 3D point cloud data, providing an open-source library that supports
auto-differentiation for sparse tensors. This approach stands out in terms of both
accuracy and efficiency, achieving state-of-the-art results.

Despite the promising outcomes, scaling these methods to large scenarios remains
challenging due to their high computational and memory requirements. Additionally,
the lack of detailed texture and color information in these methods may result in limited
performance when distinguishing objects with similar appearances.

3.1.3 Fully Supervised Semantic Segmentation Recognition with combined
2D-3D data

Improving the performance of semantic segmentation in both 2D and 3D domains has
been the focus of several studies that aim to fuse information from both modalities.
By leveraging the strengths of 2D appearance information and 3D geometric relations,
these approaches enhance scene understanding and provide more detailed geomet-
ric information about objects. In this section, we discuss notable works that utilize
combined 2D-3D data for semantic segmentation.

One approach proposed [80] introduces a 3D graph neural network for RGB-D
semantic segmentation. This method builds a k-nearest neighbor graph on top of
the 3D point cloud, allowing joint reasoning about the data by considering both 2D
appearance information and 3D geometric relations. By combining these modalities, the
model achieves improved performance in recognizing object categories and segmenting
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them in 3D space.
To incorporate depth information into the CNN architecture and improve semantic

segmentation, Depth-aware CNN (D-CNN) [81] presents a depth-aware network for
RGB-D Segmentation. This approach leverages both RGB and depth data, leading to
enhanced recognition accuracy and providing more detailed geometric information
about objects in the scene.

An end-to-end convolutional neural network that combines RGB input and 3D
geometry, 3DMV [82] is proposed. This network backprojects multi-view 2D features
to 3D volumes and predicts dense semantic labels on a voxel grid. The joint utilization
of 2D and 3D data significantly improves the accuracy of 3D segmentation compared
to existing methods.

Another framework, Multi-View PointNet (MVPNet) [83], fuses 2D multi-view im-
ages and sparse point clouds in canonical 3D space. This method employs a point-based
network to predict 3D semantic labels. By leveraging complementary features and effec-
tively handling occlusions, MVPNet outperforms prior point cloud-based approaches
in the task of 3D semantic segmentation.

Additionally, Supervoxel-CNN [84] recognizes that on-surface supervoxels provide a
compact representation of 3D surfaces. As a result, they explore a supervoxel-based
convolutional neural network, enabling joint 2D-3D learning for 3D semantic prediction.
By directly applying a convolution operation on supervoxels, the model effectively
incorporates both 2D appearance and 3D geometric information.

Figure 3.1: Overview of the Bidirectional Projection Network (BPNet) [85].

Bidirectional Projection Network (BPNet) [85] is another significant research contri-
bution that introduces a bidirectional projection network for joint 2D and 3D reasoning
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in an end-to-end manner. The primary objective of this approach is to leverage the
complementary information present in both 2D images and 3D point clouds, enabling
their interaction at multiple architectural levels. By combining these two domains,
BPNet achieves improved performance in scene recognition.

In our methodology, we adopt the BPNet architecture as the backbone network to
exploit the benefits of both the 2D and 3D domains, resulting in a robust framework.
By leveraging the detailed texture, color information from 2D images, and the valuable
geometric knowledge from 3D point clouds, BPNet enables enhanced scene under-
standing and superior segmentation performance. The key components of the BPNet
architecture, illustrated in Figure 3.1, provide a comprehensive understanding of its
functionality and contributions.

The BPNet methodology involves voxelizing 3D point clouds into volumes and
feeding them into the 3D sub-network, which is the 3D MinkowskiUNet [21]. Si-
multaneously, multi-view 2D images are fed into the 2D sub-network, which is the
2D UNet [20]. During training, three random 2D views are sampled to ensure data
diversity, while during testing, the 2D frames are divided into three groups, with one
central view selected per group to reduce overlap.

Figure 3.2: Bidirectional Projection Module (BPM) [85].

An essential module within BPNet is the bidirectional projection module (BPM),
which establishes bidirectional connections between the 2D and 3D sub-networks within
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the decoder, enabling the integration of features from both domains and enhancing
scene understanding. As depicted in Figure 3.2, the BPM constructs a link matrix that
maps voxels to pixels through perspective projection. This link matrix facilitates the
projection of 3D features into 2D space and the back-projection of 2D features into 3D
space at multiple decoder levels. To combine the projected features with the original
features, a 1x1 convolution is applied for fusion. The resulting fused features are then
passed to subsequent levels for further processing and refinement.

3.2 Weakly Supervised Semantic Segmentation

The field of weakly supervised semantic segmentation has emerged as a prominent
research area in response to the challenges associated with acquiring dense annotations,
including their high cost, labor-intensive nature, and potential annotation errors. Fully
supervised segmentation networks heavily rely on dense annotations, which are limited
and expensive to obtain. This limitation significantly hinders the scalability and
practicality of these models. Notably, datasets such as Microsoft COCO [86] require up
to 15 times more effort to annotate segmentation masks compared to object locations.
Similarly, the annotation process for ScanNetV2 [5] is time-consuming and error-prone,
with an average annotation time of approximately 22.3 minutes per indoor scene
dataset [11].

To address these challenges and enhance the robustness of semantic segmentation
models, recent studies have shifted their focus towards weakly supervised semantic
segmentation. This approach aims to overcome the limitations of dense annotations by
exploring alternative strategies that require less annotation effort while still achieving
reliable segmentation results. By leveraging weak supervision, these methods enhance
the generalizability and scalability of semantic segmentation models.

In this section, we conduct a comprehensive review of previous studies conducted in
the domains of 2D, 3D, and 2D-3D joint semantic segmentation, all of which specifically
address the weakly supervised setting. By examining these studies, we aim to gain valu-
able insights into the potential of weakly supervised semantic segmentation methods in
reducing annotation burdens while ensuring robust segmentation performance. These
approaches offer promising directions for effectively utilizing limited annotations and
improving the efficiency and adaptability of the segmentation process across various
domains.

3.2.1 Weakly Supervised 2D Semantic Segmentation

In the pursuit of effectively utilizing limited annotations, researchers have developed
innovative techniques that leverage weakly supervised approaches for 2D semantic
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segmentation. These methods harness diverse sources of supervision, including image-
level labels, bounding boxes, and scribbles, to guide the segmentation process.

Among the various weakly supervised approaches in 2D semantic segmentation, deep
CNNs have been widely employed. Several studies have explored the use of image-level
labels for segmentation such as MIL-FCN [87], Seed, Expand, and Constrain (SEC) [88],
and Superpixel Pooling Network (SPN) [89]. Image-level labels provide an efficient
setting, as each training image is assigned a class label indicating the presence of
objects belonging to that class within the image. However, accurately associating these
image-level labels with their corresponding pixels poses a challenge, as the specific
object locations within the image are unknown. To establish pixel-label correspondence,
classification activation maps (CAM) [90] was introduced, which identifies the most
discriminative regions within the image and uses them as pixel-level supervision for
segmentation networks. However, CAM may struggle to capture small and sparse
discriminative regions and may not encompass the entire object region.

To address these limitations, researchers have proposed extensions and enhancements
to the CAM-based approach. Studies such as [91, 92, 93] have expanded upon the
CAM methodology to improve the accuracy of pixel-label assignment. These works
aim to address challenges related to small, sparse, or incomplete discriminative re-
gions, contributing to the robustness and reliability of weakly supervised 2D semantic
segmentation techniques.

While image-level labels offer efficient supervision, other weakly supervised ap-
proaches employ annotations in the form of bounding boxes, such as BoxSup [94], and
DeepCut [95], or scribbles, as seen in ScribbleSup [96]. However, these methods often
require some degree of human intervention during the annotation process, making
them more costly and less scalable for large-scale visual datasets [93].

3.2.2 Weakly Supervised 3D Semantic Segmentation

This section presents several notable approaches that address weakly supervised 3D
semantic segmentation, highlighting their contributions and limitations.

[6] propose a framework that leverages incomplete supervision and inexact su-
pervision branches, along with a subsequent smooth branch, to achieve competitive
performance with weak supervision. The incomplete supervision branch utilizes anno-
tations that are uniformly distributed in the point cloud, which can pose challenges
during the annotation process [11]. However, it should be noted that this framework
may encounter memory issues when applied to large-scale point clouds due to the
parameter-free graph usage for post-processing [97].

To address the limitations of the previous method, Perturbed self-distillation (PSD) [97]
framework for weakly supervised 3D semantic segmentation was introduced. PSD
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incorporates a self-distillation mechanism to establish consistency between the original
point cloud and its perturbed version, enhancing the robustness of the segmentation
results. By integrating perturbations into the learning process, PSD effectively leverages
weak supervision to improve the overall segmentation accuracy.

Another noteworthy approach is Weakly-supervised framework for Point cloud
Recognition (WyPR) [98], which jointly learns semantic segmentation and object de-
tection for point cloud data using only scene-level class tags as supervision. This
method addresses the challenge of limited annotations by exploiting scene-level class
information and achieves promising results in weakly supervised 3D semantic seg-
mentation. By leveraging the inherent correlation between semantic segmentation and
object detection, WyPR demonstrates the potential for jointly learning these tasks with
weak supervision.

Graphical information gain-based attention network (GaIA) [99] is another approach
proposed for weakly supervised point cloud semantic segmentation. GaIA aims to
reduce epistemic uncertainty by employing graphical information gain and the anchor-
based additive angular margin loss, ArcPoint [99]. The attention network enables the
network to embed unlabeled points with high entropy toward the reliable labeled
points, contributing to enhanced segmentation results.

[11] propose the One Thing One Click (OTOC) annotation strategy, where annotators
label one point per object. They introduce a self-training approach with iterative
training and label propagation, incorporating a graph propagation module and a
relation network to model node similarity and generate pseudo labels. Similar to
our methodology, they employ oversegmentation of point clouds into supervoxels
and expand their OTOC annotations using the supervoxel partition, generating initial
pseudo labels that guide subsequent updates. Their framework is detailed in Figure
3.3. Furthermore, [11] adopt a different strategy for oversegmenting point clouds
compared to our approach. They use the provided segments from the ScanNetV2 [5]
dataset for their ScanNetV2 experiments, while relying on the geometrical partitioning
results by [100] for supervoxel partitioning in the S3DIS [17] dataset.

These studies highlight the ongoing efforts to develop effective techniques for weakly
supervised 3D semantic segmentation. While each approach presents its unique contri-
butions, challenges such as establishing annotation consistency, memory limitations,
and limited supervision sources remain to be addressed.

3.2.3 Weakly Supervised Semantic Segmentation with Combined 2D-3D
Data

The exploration of complementary features between the 2D and 3D domains has been
extended to weakly supervised semantic segmentation, where robust segmentation
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Figure 3.3: Overview of "One Thing One Click" framework, figure from [11].

methods are crucial. Researchers have proposed various approaches that leverage the
strengths of both modalities to improve segmentation performance in the absence of
fully labeled data.

One such approach is presented by [101], who propose a joint 2D-3D deep architecture
for semantic point cloud segmentation. Their method utilizes a deep convolutional
framework that is supervised by 2D annotations to segment 3D point clouds. To enforce
correspondences between 2D and 3D mappings and address occlusions, they employ
a novel re-projection method and an Observability Network (OBSNet). However,
this method still relies on dense 2D ground truth labels for accurate 2D semantic
segmentation.

[102] propose a network that combines sparse 2D bounding box labels with available
3D information. By exploiting both modalities, their method enhances the segmentation
accuracy of 3D point clouds while utilizing the limited supervision provided by the
bounding box labels.

In a 2D-3D joint framework for weakly supervised semantic segmentation, [103]
leverages CAM [90] in both the 2D and 3D domains, bridging the gap between 2D
pixels and 3D points through projection. They utilize the 2D CAM as self-supervision
to improve the semantic perception of the 3D CAM, resulting in enhanced segmentation
results.

While the aforementioned methods focus on indoor datasets, Superpixel-driven
Lidar Representations (SLidR) [104] addresses the outdoor scenario. They propose a
self-supervised 2D-to-3D representation distillation method, incorporating a superpixel
to superpoint contrastive loss and a carefully designed image feature upsampling
architecture. However, during training, the image branch of their network is frozen,
which limits the joint training of the entire network. In contrast, [105] proposes a
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cross-modality framework that can be trained synchronously, effectively incorporating
complementary information from unlabeled images. Their approach involves a dual-
branch network and an active labeling strategy to maximize the potential of weak labels
and achieve 2D-3D knowledge transfer.

In our robust label propagation approach, we also leverage the combined 2D-3D
domains for weakly supervised semantic segmentation. By integrating both modalities,
we enhance the robustness of the label propagation process, enabling more accurate
and reliable segmentation results. The complementary nature of 2D appearance infor-
mation and 3D geometric relations aids in improving the segmentation performance
and addressing the challenges posed by noisy oversegmented point clouds and 2D
images. Our approach benefits from the insights and methodologies proposed by the
aforementioned studies, contributing to the advancement of robust weakly supervised
semantic segmentation techniques.

These studies, including our own approach, highlight the effectiveness of combining
2D and 3D information for weakly supervised semantic segmentation. By leveraging the
complementary strengths of both modalities, these approaches demonstrate improved
segmentation performance and the ability to transfer knowledge between 2D and 3D
domains. The integration of 2D and 3D data in weakly supervised scenarios enables
the extraction of richer semantic representations and enhances the understanding of
complex scenes, while also providing robustness to noisy oversegmented data.

3.3 Learning with Noisy Labels

The field of semantic segmentation in images and point clouds has witnessed signifi-
cant advancements, enabling accurate object and boundary delineation. However, the
performance of these models can be hindered by label noise, which arises from errors
or inconsistencies in the ground truth annotations. Label noise poses a challenge to
semantic segmentation as it can lead to overfitting and performance degradation. There-
fore, developing effective strategies to learn from noisy labels is essential to enhance
the robustness and generalization capabilities of semantic segmentation methods.

Various factors contribute to the presence of noisy labels, as discussed in section 2.5.
Existing research in learning with noisy labels has primarily focused on fully supervised
scenarios, where the label noise is often attributed to incorrect annotations. This is due
to the inherent difficulty and high cost involved in obtaining ground truth labels with
high accuracy. Although methods addressing label noise have predominantly targeted
image classification and image segmentation tasks to improve noise tolerance, recent
studies have recognized the need to address label noise specifically in the context of
semantic segmentation.
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To mitigate the impact of label noise, researchers have explored different approaches.
One direction of research focuses on developing robust architectures and loss functions
to handle noisy labels. For instance, [13] introduce a probabilistic graphical framework
that incorporates latent variables to model the relationships between input images, class
labels, and label noises for image classification. [14] provide sufficient conditions on loss
functions that inherently tolerate label noise for multiclass classification problems. They
demonstrate the robustness of mean absolute error (MAE) loss compared to commonly
used categorical cross entropy (CCE) loss in the presence of label noise. [106] propose
utilizing different losses for foreground-background and foreground-instance sub-tasks
in instance segmentation. They employ the noise-robust loss, reverse cross entropy
(RCE) loss [107] to prevent incorrect gradient guidance in the foreground-instance
sub-task, while using the standard cross entropy (CE) loss to fully exploit correct
gradient guidance in the foreground-background sub-task. COVID-19 Pneumonia
Lesion segmentation network (COPLE-Net) [108] proposes a framework for learning
from noisy labels in the context of pneumonia lesion segmentation from computed
tomography (CT) scans of COVID-19 patients. They design a noise-robust Dice loss [46]
and an adaptive self-ensembling approach, which involves an adaptive teacher and an
adaptive student, to improve the performance in dealing with noisy labels.

In the domain of learning with noisy labels, a research direction that has gained
attention involves loss adjustment techniques, which aim to mitigate the negative
impact of label noise by adjusting the loss of training samples. These techniques can be
further classified into several subcategories, namely loss correction, loss reweighting,
label refurbishment, and meta-learning.

One method that falls under the category of loss correction is the Gold Loss Correction
(GLC) method [109] which estimates a corruption matrix based on a model trained
on clean samples, allowing for loss correction. Another approach [110] adopts a label
refurbishment strategy specifically designed for semi-supervised semantic segmentation.
Their framework employs CAM [90] to generate pixel-level labels for images that
initially possess only image-level labels. By training a clean segmentation model with
a small set of strong annotations and utilizing the CE loss, they differentiate between
clean labels and noisy pixel-level labels. To correct noisy labels, they construct a
superpixel-based graph that incorporates spatial adjacency and semantic similarity,
propagating the clean labels using Graph Attention Network (GAT) [71]. The corrected
pixel-level pseudo labels are then utilized to train a semantic segmentation model.

Moreover, the exploration of learning with noisy labels has extended to weakly su-
pervised settings. [111] propose a novel approach to learning a semantic segmentation
model from both weak and noisy labels, employing label refurbishment techniques.
Their method involves oversegmenting each image into superpixels, propagating weak
and potentially noisy image-level labels to the superpixel level, and subsequently
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correcting the noisy labels. By treating weakly supervised semantic segmentation as a
noise reduction problem, they develop a superpixel label noise reduction model based
on sparse learning with an efficient optimization algorithm.

Another subcategorized approach for handling noisy labels is loss reweighting. [15]
focus on the problem of multiclass classification under label noise and investigate
importance reweighting techniques [112]. Their method assigns smaller weights to
falsely labeled data and greater weights to correctly labeled data, thereby adjusting
the loss function accordingly. Active Bias [113] which assigns weights to uncertain
examples with inconsistent label predictions based on their prediction variances during
training. Another work, DualGraph [114] captures structural relations among labels
using graph neural networks and reweights the samples according to the distribution
relation, aiming to eliminate abnormal noise samples. [115] leverage meta-learning
principles and propose an automatic reweighting algorithm that assigns weights to
training examples based on their gradient directions.

In the context of point cloud semantic segmentation, the Point Noise-Adaptive
Learning (PNAL) framework [16] tackles annotation noise by incorporating a point-
level confidence selection mechanism and a label correction process at the cluster level.
This framework aims to enhance the robustness of point cloud semantic segmentation
models to noisy annotations while maintaining computational efficiency. An extension
of PNAL, called PNAL-boundary [116], is proposed to correct labels near boundaries
while preserving clean labels for inner points in instance-level label noise scenarios.

In our work, we extend the existing approaches and investigate learning with noisy
labels in the context of weakly supervised semantic segmentation. We adapt loss
adjustment strategies, such as loss reweighting, and utilize robust loss functions to
develop more robust techniques for label propagation in oversegmented point clouds
and 2D images with noisy labels. By addressing the challenges posed by label noise,
our approach contributes to the development of more accurate and reliable weakly
supervised semantic segmentation methods.

3.4 VCCS: Voxel Cloud Connectivity Segmentation

VCCS [28] is an unsupervised oversegmentation algorithm. This algorithm is specifi-
cally designed for point clouds and leverages voxel relationships and geometric features
to generate supervoxels. The goal of VCCS is to produce meaningful segments that
align with object boundaries in the observed 3D space. To achieve this, the algorithm
employs a seeding methodology in 3D space and utilizes flow-constrained local iterative
clustering, taking into account both color and geometric characteristics.

In our study, the VCCS algorithm plays a crucial role as a preprocessing step for point
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clouds. By applying VCCS, we generate supervoxels through oversegmentation, which
serves as a fundamental component in our exploration of weakly supervised semantic
segmentation with limited labeling resources. The generation of oversegmented point
clouds is essential for employing label propagation techniques and obtaining additional
supervised signals during the training process. Consequently, it is imperative to
understand the underlying methodology of VCCS to address any noise or inaccuracies
in object boundaries and develop appropriate solutions.

Preserving object boundaries is a critical aspect of the VCCS method. The algorithm
relies on an adjacency graph to establish relationships between voxels, ensuring that
supervoxels accurately capture object boundaries without crossing disconnected bound-
aries in 3D space. This adjacency graph facilitates the generation of supervoxels and
aids in the subsequent segmentation process.

The process of supervoxel generation in VCCS involves the selection of initial seed
points to initiate the segmentation process. The 3D space is divided into a voxelized
grid using a specific resolution denoted as Rseed, and each occupied seeding voxel
corresponds to a potential seed point. The seed point is determined by identifying the
voxel in the point cloud that is closest to the center of the seeding voxel.

In the VCCS algorithm, distance calculation plays a vital role in the clustering
process. To ensure efficient and effective clustering, the spatial component of distances
is normalized based on the seed resolution Rseed. This normalization constrains the
search space for each cluster to terminate at the neighboring cluster centers, promoting
coherent supervoxel generation.

The distance measure used in VCCS is defined as follows:

D =

√
λD2

c
m2 +

µD2
s

3R2
seed

+ ϵD2
HiK (3.1)

In this equation, λ, µ, and ϵ are parameters that control the influence of color, spatial
distance, and geometric similarity, respectively, during the clustering process. Ds

represents the spatial distance, which measures the proximity of points in 3D space. Dc

represents the color distance, quantifying the dissimilarity in color attributes between
points. Finally, DHiK represents the distance in the Fast Point Feature Histograms
(FPFH) space, which is calculated using the Histogram Intersection Kernel. This
distance captures the similarity in local geometric properties and aids in distinguishing
different regions within the point cloud.

By considering the combined effects of color, spatial proximity, and geometric simi-
larity through the distance measure, VCCS achieves segmentation results by accurately
delineating object boundaries and capturing meaningful geometric structures in the
point cloud data.
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Furthermore, VCCS involves the Flow Constrained Clustering stage, which is an
iterative process that assigns voxels to supervoxels while considering connectivity and
flow. This stage utilizes local k-means clustering to iteratively expand supervoxels
and maintain spatial continuity within object boundaries. The iterative refinement
in the flow constrained clustering algorithm enhances the accuracy and coherence of
the supervoxel segmentation, aligning it more closely with the underlying geometric
structures present in the point cloud data.
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4.1 Overview

This section provides an overview of the methodology employed to address the chal-
lenges associated with weakly supervised semantic segmentation in noisy overseg-
mented point clouds and 2D images. The objective is to enhance the accuracy and
robustness of semantic segmentation under the sparse label setting, while leveraging
the fusion of 2D and 3D modalities and exploring loss adjustment strategies.

In the context of sparse label settings, the methodology incorporates an overseg-
mentation approach to increase the supervision signal. This involves segmenting the
point cloud into supervoxels, which group together points with similar characteris-
tics. Additionally, superpixels are generated by projecting the supervoxels onto their
corresponding 2D image counterparts, facilitating the integration of the 2D modality.
The sparse labels obtained are then propagated to all points within the supervoxels
and all pixels within the superpixels, effectively augmenting the number of labeled
points/pixels.

However, oversegmentation introduces complications of its own. The supervoxels
and superpixels generated may suffer from noise, as the employed oversegmentation
method may not precisely preserve object boundaries. Consequently, the generated
supervoxels and superpixels may contain points belonging to different objects or exhibit
imprecise boundaries, posing challenges for accurate label propagation and subsequent
semantic segmentation.

To address these challenges, our methodology investigates strategies to improve label
propagation by leveraging the information obtained through oversegmentation while
mitigating the challenges posed by oversegmentation noise, as illustrated in Figure 4.1.
The goal is to enhance the accuracy and robustness of weakly supervised semantic
segmentation in noisy oversegmented point clouds and 2D images.

The methodology encompasses several key techniques:
Adaptation of a Robust Architecture: By utilizing BPNet [85], we aim to develop

a robust architecture that enhances label propagation. This network leverages both
3D geometric features and 2D complementary information, augmenting the network’s
resilience to noisy labels.

Label Propagation on Oversegmented Point Clouds and Images: Sparse labels
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Figure 4.1: Overview of our framework. The framework employs supervoxel and
superpixel partitioning to propagate sparse labels. We adopt BPNet [85] as
the backbone architecture, which consist of two symmetric networks: 2D
U-Net [20] and 3D MinkowskiUNet [21] for semantic label prediction. To
mitigate label noise in the propagated labels, we incorporate robust loss
functions and train the network using both CE loss and robust loss.
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are propagated to unlabeled points/pixels within the oversegmented regions, thereby
increasing the supervision signal and expanding the labeled dataset.

Loss Adjustment Methods by Loss Reweighting: To address the influence of noisy
labels, loss adjustment techniques, such as loss reweighting, are investigated. These
methods assign appropriate weights to training samples based on the distance metrics,
reducing the impact of noisy labels during the training process.

Exploration of Robust Loss Functions: Various robust loss functions are experi-
mented with to mitigate the negative impact of label noise. These loss functions aim to
enhance the network’s performance and improve its generalization capabilities.

By integrating these techniques, our methodology aims to develop more efficient
and reliable methods for weakly supervised semantic segmentation, reducing the
dependence on labor-intensive labeling processes and improving the generalization
capabilities of deep learning models.

The subsequent sections will delve into the details of the data preprocessing stage,
the approach for generating oversegmented point clouds and 2D images, the challenges
associated with the employed oversegmentation method, and the robust techniques
explored in this study, including the adaptation of a robust architecture, label propa-
gation methods, the exploration of robust loss functions, and the generation of loss
adjustment methods through loss reweighting.

4.2 Data Preprocessing

In this thesis, the data preprocessing stage involves preparing ScanNetV2 [5] and
2D-3D-S [17] for subsequent analysis and experimentation.

4.2.1 Generation of 2D Label Images

The generation of 2D label images is a crucial step in our methodology as they serve as
input for our backbone network, which combines both 3D and 2D modalities.

To begin, we resized the color, depth, and pose images to a uniform resolution of
320 x 240 pixels. Subsequently, we employed perspective projection to create annotated
label images. This process involved projecting the 3D points onto the 2D image plane
and extracting the corresponding label information. This can be expressed as:

[ui, vi, 1]T = M[xi, yi, zi, 1]T (4.1)

Here, [xi, yi, zi, 1]T represents the homogeneous coordinates of a 3D point in the
world coordinate system, [ui, vi, 1]T denotes its projected 2D homogeneous coordinates,
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and M is the perspective camera matrix derived from the intrinsic camera calibration
matrix and the extrinsic camera pose matrix.

During the projection, several issues need to be addressed. To handle projected
labels that reside outside the image boundary, we removed them from the resulting
label images. Additionally, occlusion-related challenges were tackled by employing an
occlusion mask during the projection process. This mask ensures that hidden surfaces,
which are projected onto certain pixels but do not have an actual relationship with those
pixels, are correctly handled. To achieve this, the depth map was utilized to determine if
a point is occluded by comparing its depth value with the z-coordinate of the projected
point located within a 5cm range from the 3D position of the corresponding pixel.

It is important to note that the generated label images may not possess the exact
qualitative characteristics as the original image labels provided by the dataset, as
additional filters and adjustments might be applied. However, for the purpose of our
experiments and the goal of utilizing very sparse annotations in 3D, we generated our
own 2D image labels to avoid an additional annotation burden for the 2D images. By
generating our own 2D label images, we maintain control over the annotation process
and can tailor it to the specific requirements of our methodology, while still achieving
the objective of utilizing sparse annotations in the 3D domain.

4.2.2 Generation of Oversegmented Point Clouds

The generation of oversegmented point clouds plays a fundamental role in our study,
specifically in the context of exploring weakly supervised semantic segmentation with
very sparse labels. By leveraging label propagation, our aim is to obtain additional
supervised signals during training, which necessitates the identification of meaningful
regions within the point cloud.

To accomplish this, we employ the VCCS [28] algorithm as an unsupervised tech-
nique for generating oversegmented point clouds. The primary objective of the VCCS
algorithm is to partition the point cloud data into semantically meaningful regions by
utilizing spatial and normal characteristics. This process involves dividing the point
cloud into smaller cubic regions called voxels using an octree structure. Subsequently,
adjacent voxels are clustered using the k-means algorithm, resulting in the generation
of supervoxels.

The calculation of distances plays a critical role in the VCCS algorithm as it deter-
mines the similarity between points. While the original VCCS paper incorporates color
information in the distance calculation, we have decided to exclude color in our study
due to its limited availability in various datasets. Instead, we have opted for a distance
formula that prioritizes geometric similarity, as suggested by [23]:
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D(p, q) = 1 −
∣∣np · nq

∣∣+ 0.4
|p − q|
Rseed

(4.2)

Here, np and nq represent the normal vectors of points p and q, respectively. The
distance formula combines the dot product of the normal vectors with the Euclidean
distance between points, normalized by the parameter Rseed. By focusing exclusively on
geometric similarity and excluding color information, our distance measure provides a
robust foundation for the supervoxel segmentation process in our research.

However, a significant challenge associated with the VCCS algorithm is the presence
of incorrect boundaries, particularly in cases where the point cloud exhibits non-
uniform density. In such situations, multiple objects may overlap within the same voxel,
resulting in points belonging to different objects existing within a supervoxel. This
leads to supervoxels with inaccurate object boundaries, which can have a detrimental
effect on the accuracy of assigned labels for each supervoxel. Consequently, the label
propagation to each point within the supervoxel may suffer, potentially resulting in
erroneous learning by the network.

To address this challenge, we incorporate robust techniques into our methodology
to enhance the results of weakly supervised semantic segmentation. These techniques
focus on mitigating the impact of noisy supervoxels and improving the accuracy of label
assignment and subsequent label propagation. By employing these robust techniques,
we aim to minimize the influence of incorrect boundaries and enhance the overall
performance of weakly supervised semantic segmentation.

4.2.3 Assigning Labels to the Supervoxels

The process of assigning labels to the generated supervoxels is a crucial step in our
methodology. This step aims to provide each supervoxel with a distinct and meaningful
identity, which is essential for subsequent segmentation and analysis tasks.

To assign labels to the supervoxels, we examine the points contained within each
supervoxel. If a supervoxel does not contain any labeled points, no further action is
taken, as it lacks sufficient information for reliable labeling. However, if the supervoxel
comprises points that share a single label, we directly assign that label as the label for
the entire supervoxel. This indicates that the supervoxel represents a coherent and
homogeneous region with a clear semantic interpretation.

In certain cases, a supervoxel may contain points with multiple labels, indicating
ambiguity or overlap between different object categories within the supervoxel. To
address this ambiguity, we employ a majority voting scheme. We count the occurrences
of each label within the supervoxel and assign the label with the highest count as the
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label for the supervoxel. This voting process ensures that the supervoxel is assigned a
single label, even in the presence of multiple labels within it.

By assigning unique labels to the supervoxels, we establish an initial set of labels for
each supervoxel. These initial labels serve as the starting point for the subsequent label
propagation process.

4.2.4 Generation of Oversegmented Images

To generate oversegmented images, we employed perspective projection techniques by
utilizing Equation 4.1. This process involved leveraging the color images, depth maps,
intrinsic camera parameters, and pose information associated with the scene under
consideration. By projecting the supervoxels onto the 2D image plane using the camera
parameters and depth information, we were able to establish a mapping between the
VCCS [28] supervoxels and the image space as illustrated in Figure 4.2.

2D Image Our superpixels

Figure 4.2: Application of our superpixel generation algorithm on a 2D image from the
ScanNetV2 dataset [5].

However, the generated superpixels may lack meaningful boundaries and connected
components, which can hinder subsequent analysis and interpretation. To address this
issue, we employed the concept of alpha shapes, also known as α-shapes, to refine
the generated superpixels. Alpha shape computation provides a valuable tool for
shape analysis by extending the concept of convex hulls to capture the interconnections
between points within a finite set. It represents a family of piecewise linear curves in
the Euclidean plane. The alpha parameter serves as a threshold value, defining the
edges between points within a radius of 1/α [117].

By incorporating the alpha shape computation method, we successfully generated
oversegmented images with enhanced spatial continuity and coherence within object
boundaries.
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4.3 Label Propagation on Oversegmented Point Clouds and
Images

Label propagation is a fundamental technique employed to enhance weakly supervised
semantic segmentation by leveraging sparse labels. In this section, we outline the
process of label propagation on oversegmented point clouds and images, aiming to
enrich the training process and augment the limited supervision.

Once the supervoxels and superpixels are generated and assigned initial labels
as described in the previous sections, the next step is to propagate these labels to
the unlabeled points/pixels within the corresponding supervoxels and superpixels.
By extending the labels, we obtain additional supervised signals, thereby enriching
the training data and enhancing the discriminative capacity of the models. Figure
4.3 visually demonstrates the increase in the number of labeled points after label
propagation.

However, it is crucial to acknowledge the challenges arising from inherent noise and
the lack of well-defined object boundaries in oversegmented point clouds and images.
These factors introduce potential inaccuracies during the label propagation process.
For instance, the majority voting scheme employed in the initial label assignment may
misclassify points/pixels belonging to different objects that reside within the same
supervoxel or superpixel. Consequently, the entire region is assigned the label of the
majority, resulting in misclassification.

The presence of noisy propagated labels poses challenges for deep learning models,
as they are prone to biases originating from the training set. Therefore, it is essential to
carefully consider and mitigate the effects of noisy labels during the training process.
Strategies such as utilizing robust loss functions, regularization techniques, or loss
adjustment methods can help alleviate the negative impact of noisy labels and enhance
the robustness of the models.

Moreover, strategies such as incorporating confidence scores or weights for each
label during the label propagation can help alleviate the negative impact of noisy labels
and enhance the robustness of the models. By assigning higher confidence scores or
weights to labels that exhibit greater consistency within the supervoxel or superpixel,
the models can prioritize more reliable information and reduce the influence of noisy
labels.
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Figure 4.3: Illustration of label propagation on oversegmented point clouds. Sparse
labels are propagated to unlabeled points within supervoxels, enriching the
training data and increasing the number of labeled points.

4.4 Robust Architecture: Bidirectional Projection Network for
Enhanced Weakly Supervised Semantic Segmentation

In our proposed framework, we adopt the BPNet [85] as the backbone network for
semantic label prediction. The BPNet architecture is specifically designed to exploit the
complementary information available in both the 2D and 3D domains, allowing for
their seamless integration in an end-to-end fashion. Originally designed for fully super-
vised settings, BPNet has showcased remarkable performance on the ScanNetV2 [5]
benchmark for both 2D and 3D semantic segmentation tasks. Notably, it has demon-
strated the ability to distinguish geometrically close objects, such as walls and pictures,
based on their 2D color and texture characteristics. Therefore, we adopt BPNet as the
backbone network in our framework due to its characteristics aligning with our goal of
developing a robust architecture within a weakly supervised setting.

To enhance the robustness of BPNet in a weakly supervised scenario, we propose an
innovative approach by integrating additional components into the framework. These
components play a pivotal role in guiding the training process by incorporating over-
segmented point clouds and images. This integration leads to an increased number of
labels obtained through label propagation, thereby enabling the network to gain a more
comprehensive understanding of the scene and improving its semantic segmentation
performance.

During the training phase, we utilize point clouds with sparse labels alongside
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their corresponding 2D images, which also possess limited annotations. These data
pairs are fed as input to BPNet. The architecture of BPNet comprises two symmetric
subnetworks: a 2D UNet [20], serving as the backbone for 2D segmentation, and a 3D
MinkowskiUNet [21], serving as the backbone for 3D segmentation. The training loss
employed by BPNet is a weighted sum of CE losses for the 2D and 3D predictions. In
our framework, we further enhance the loss function by incorporating additional robust
loss terms aimed at minimizing the discrepancy between the 2D and 3D predictions
of BPNet and the oversegmented point clouds and pixels. This enhancement serves
to align the predictions of BPNet with the additional supervisory signals, facilitating
better consistency and improving the network’s ability to handle the challenges posed
by weak supervision and the inherent diversity of the input data.

4.5 Robust Losses for Handling Noisy Labeled Oversegmented
Point Clouds and Pixels

In this section, we delve into the crucial aspect of handling noisy labeled oversegmented
point clouds and images within our robust architecture. The presence of such noise
poses a significant challenge in effectively training the adapted network, as it can lead
to the learning of mislabeled data, ultimately impairing the overall performance of the
network. To address this issue and ensure robustness, we explore the integration of
additional components, specifically focusing on robust losses.

Robust losses play a vital role in reducing the network’s sensitivity to noisy labels,
enabling it to learn from the available data with greater resilience. By employing a
robust loss instead of a non-robust one, the model becomes less influenced by the
noisy labels and exhibits reduced sensitivity to large errors. Consequently, the robust
loss functions serve as a means to establish the desired robustness in our network
architecture.

The choice of a suitable loss or objective function holds paramount importance in
the design of complex segmentation-based deep learning architectures. Researchers,
recognizing this significance, have extensively investigated various domain-specific loss
functions, aiming to enhance the results obtained on their respective datasets. In the
subsequent sections, we present and elaborate on the specific loss functions that we
have thoroughly investigated and experimented with in our approach.

By examining and assessing these robust loss functions, we aim to identify the most
effective one for our methodology. The selected robust loss function will then be
integrated into our framework, further enhancing its ability to handle noisy labeled
oversegmented point clouds and pixels.
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4.5.1 Cross Entropy Loss

The CE loss is a commonly used loss function in deep learning for classification tasks,
such as semantic segmentation. It quantifies the dissimilarity between the predicted
probability distribution and the true distribution of class labels. In the context of pixel-
wise semantic segmentation, the network predicts the probability of each semantic
category for each pixel in an image. The CE loss is computed as the average negative
logarithm of the predicted probabilities for the correct classes.

The CE loss is defined as:

LossCE = − 1
N

N

∑
n=1

yn log ŷn (4.3)

where N represent the total number of pixels in the image and yn and ŷn denote the
one-hot vector representation of ground truth labels and the corresponding softmax
output from the network, respectively.

4.5.2 Dice Loss

Dice loss [46], is an objective function based on the Dice coefficient. The Dice coef-
ficient measures the overlap between two sets and is commonly used for evaluating
segmentation tasks. In the context of pixel-wise semantic segmentation, Dice loss
addresses the issue of class imbalance in terms of pixel count between the foreground
and background. In situations where foreground examples are extremely scarce in an
image, the network may exhibit a strong bias toward the background. To address this
problem, Dice loss is proposed to balance the foreground and background contributions.
Dice loss is defined as:

LossDice = 1 − 2 ∑n
i=1 piyi

∑n
i=1 p2

i + ∑n
i=1 y2

i
(4.4)

where, pi ∈ P represents the predicted probability of the i-th pixel, and yi ∈ G
represents the corresponding ground truth. The loss computes the Dice coefficient by
calculating the overlap between the predicted and ground truth values and subtracting
it from 1. By minimizing this loss, the network is encouraged to maximize the overlap
between the predicted and ground truth segmentation maps, leading to improved
segmentation performance.

4.5.3 Focal Loss

Focal loss [47], is a modification of the CE loss that addresses the issue of class
imbalance by down-weighting the loss assigned to well-classified examples. This
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down-weighting mechanism enables the model to focus more on learning from hard
examples, improving its performance in challenging scenarios. Focal loss aims to tackle
the problem of overwhelming easy negatives during training by emphasizing a sparse
set of hard examples. Focal loss is defined as:

LossFocal = −(1 − pt)
γ log(pt) (4.5)

In this formula, (1 − pt) acts as a modulating factor added to the CE loss, where
pt represents the predicted probability of the true class. The focusing parameter γ

controls the degree of down-weighting. When an example is misclassified and pt is
small, the modulating factor is close to 1, and the loss remains unaffected. However,
as pt approaches 1, the factor approaches 0, effectively down-weighting the loss for
well-classified examples. The focusing parameter γ allows for a smooth adjustment of
the down-weighting rate for easy examples.

4.5.4 Tversky Loss

Tversky loss [48], is a loss function based on the Tversky index. It is designed to
address the issue of data imbalance and improve segmentation outcomes with high
precision but low recall. By incorporating weighting coefficients α and β, Tversky loss
assigns different weights to false positives (FP) and false negatives (FN), allowing for a
more flexible trade-off between precision and recall. Tversky loss is defined as:

LossTversky = 1 − 1 + pp̂
1 + pp̂ + α(1 − p) p̂ + βp(1 − p̂)

(4.6)

In this formula, p represents the predicted probability of a positive label, and p̂
represents the ground truth probability. The numerator 1+ pp̂ measures the intersection
between the predicted and ground truth labels, while the denominator incorporates
additional terms that account for false positives and false negatives. The weighting
coefficients α and β control the influence of FP and FN, respectively. Setting α = β = 0.5
results in an equal weighting of precision and recall, equivalent to Dice loss. By
adjusting the values of α and β, Tversky loss allows for prioritizing precision or
recall, providing a flexible framework for handling imbalanced datasets and improving
segmentation performance.

4.5.5 Focal Tversky Loss

Focal Tversky loss [118], is a modified version of the Tversky loss [48] function that
addresses the issue of class imbalance in semantic segmentation tasks. It aims to
improve the balance between precision and recall in the segmentation results. Similar
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to Focal loss [47], Focal Tversky loss incorporates a focal mechanism to emphasize hard
examples, particularly those with small regions of interest (ROIs), by introducing a
parameter γ. Focal Tversky loss is defined as:

LossFocalTversky = ∑
c
(1 − TIc)

1/γ (4.7)

In this formula, c represents the class index, and TIc denotes the Tversky index
for class c. The Tversky index measures the similarity between the predicted and
ground truth segmentations. By subtracting the Tversky index from 1, Focal Tversky
loss assigns higher weights to examples with lower Tversky scores, which correspond
to more challenging cases. The parameter γ controls the rate at which the loss is
down-weighted for well-classified examples. Choosing γ within the range of [1, 3]
allows for customization of the focal mechanism according to the desired emphasis on
hard examples.

4.5.6 Online Hard Example Mining

The fundamental principle of Online Hard Example Mining (OHEM) [119] is to con-
struct mini-batches using high-loss examples. This is accomplished by assigning a
score to each training example based on its loss, reflecting the degree of difficulty
encountered by the current network in classifying that specific example.

The procedure of OHEM can be described as follows: Given a list of training examples
and their corresponding losses, the algorithm selects the example with the highest loss.
Subsequently, any other examples with low training losses (typically those below 70%
of the highest training loss) are discarded. This selection process is repeated until the
desired batch size is attained, resulting in a mini-batch comprised of the highest-loss
examples.

In contrast to the Focal loss [47], which assigns higher weights to misclassified
examples while still considering easier examples, OHEM completely disregards easy
examples during the training process. By solely focusing on challenging examples,
OHEM aims to enhance the effectiveness and efficiency of training.

4.5.7 Lovasz-Softmax Loss

The Lovasz-Softmax loss [120], is a loss function specifically designed for optimizing
the Mean Intersection over Union (mIoU) in neural networks for semantic segmentation
tasks. It leverages the convex Lovasz extension of sub-modular losses to directly
optimize the Intersection over Union (IoU).

The Lovasz-Softmax loss combines the softmax and Lovasz hinge functions to achieve
tractable optimization and improved performance, particularly on small objects and
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false negatives. It operates on the normalized network outputs and is piecewise linear
in these outputs. By considering the class-averaged mIoU metric common in semantic
segmentation, the loss averages the class-specific surrogates. The Lovasz-Softmax loss
is defined as:

LossLovasz−So f tmax =
1
|C| ∑

c∈C
∆Jc(m(c)) (4.8)

Here, C represents the set of classes, and |C| denotes the number of classes. m(c)
represents the network’s predicted probability vector for class c. The function ∆Jc(m(c))
corresponds to the Lovasz hinge function, which quantifies the deviation between the
predicted probabilities and the ground truth with respect to the Jaccard index.

In the case of confident outputs (large scores), where the probability vectors at each
pixel closely resemble an indicator vector, the Lovasz-Softmax loss converges to the
discrete Jaccard index for the corresponding discrete labeling with respect to the ground
truth.

By directly optimizing the mIoU through the Lovasz-Softmax loss, the network
is encouraged to produce more accurate and precise segmentations, especially for
challenging cases involving small objects and false negatives. The convexity of the
Lovasz extension enables efficient optimization, making the loss suitable for training
neural networks in semantic segmentation tasks.

4.6 Loss Adjustment Methods for Weighted Impact and
Improved Training

In this section, we present novel loss adjustment methods designed to handle noisy
labeled oversegmented point clouds and pixels within our robust architecture. The aim
is to effectively mitigate the negative impact of noisy labels by adjusting the loss of all
training examples prior to updating the neural network weights. To achieve this, we
propose loss reweighting, which assigns different confidence scores to each example,
enabling a weighted training scheme.

By introducing an additional level of granularity into the segmentation process, we
effectively address challenges such as noise, occlusion, and accurate delineation of
complex object boundaries. These loss adjustment methods contribute to improved
training by providing a more robust and reliable learning framework.

In the following subsections, we will describe the specific algorithms used to calculate
the distances and weighting algorithms for confidence score assignment, which serve
as key components of our loss adjustment strategy.
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4.6.1 Distance Calculation Algorithms

To implement loss adjustment, we have developed distance calculation algorithms that
take into account the geometric relationships within the clusters. In the context of this
section, clusters refer to supervoxels in point clouds and superpixels in images. These
algorithms enable the calculation of distances between the points/pixels within each
cluster and the known sparse labels provided by the dataset, as well as the cluster
centers. By considering the geometric relationships within the clusters, we aim to assign
a proper confidence score that takes into account the presence of noisy boundaries
containing mislabeled points.

The distance calculation algorithms are applied separately for supervoxels in point
clouds and superpixels in images. The calculated distances play a crucial role in
creating the weights for loss adjustment.

4.6.1.1 Center-Based Distance Calculation

The center-based distance calculation algorithm is used to compute the distances
between the points or pixels within a cluster and the center of that cluster. The main
idea behind this algorithm is that propagated labels of points or pixels closer to the
cluster center are considered more reliable. By assessing the distances between the
labels and their respective cluster centers, we can evaluate the reliability of the labels.

Algorithm 1 Center-Based Distance Calculation

Input: Point cloud data or image data with propagated labels
Output: Distances between propagated labels and cluster centers

1: for each cluster cl in clusters do
2: Compute the center c = calculateCenter(cl)
3: for each point/pixel p in cl do
4: Calculate the distance d = calculateDistance(p, c)
5: end for
6: end for

The Algorithm 1 utilizes the calculateCenter function to determine the center of
each cluster. Then, for each point or pixel within the cluster, the algorithm calcu-
lates the distance between the label and its corresponding cluster center using the
calculateDistance function. This process is repeated for all clusters in the point cloud
or image data. The resulting distances provide valuable information about the reliability
of the propagated labels based on their proximity to the cluster centers. By considering
the distances from the cluster centers, the algorithm assigns higher reliability to the
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propagated labels of points or pixels that are closer to the center of their respective
clusters.

4.6.1.2 Closest Sparse Label to Center-Based Distance Calculation

The closest sparse label to center-based distance calculation method focuses on identi-
fying the closest sparse label to the center of the cluster. The algorithm calculates the
distances between the sparse label and all the points or pixels with the propagated
label within the cluster. The assumption is that the sparse label closest to the cluster
center provides more reliable information than other sparse labels in the cluster.

Algorithm 2 Closest Sparse Label to Center-Based Distance Calculation

Input: Point cloud data or image data with propagated labels, Sparse labels
Output: Distances between closest sparse label and propagated labels

1: for each cluster cl in clusters do
2: Compute the center c = calculateCenter(cl)
3: Determine the closest sparse label csl =min(calculateDistance(c, sparseLabels))
4: for each point/pixel p in cl do
5: Calculate the distance d = calculateDistance(p, csl)
6: end for
7: end for

The Algorithm 2 iterates over each cluster in the given point cloud or image data with
propagated labels. For each cluster, it calculates the center using the calculateCenter
function. It then determines the closest sparse label to the center by finding the
minimum distance between the center and the sparse labels. Next, for each point or
pixel within the cluster, it calculates the distance between the point and the closest
sparse label using the calculateDistance function. This process is repeated for all
clusters, resulting in the distances between the closest sparse label and the propagated
labels. This method allows for the identification of the most relevant sparse label within
each cluster based on its proximity to the cluster center.

4.6.1.3 Multiple Sparse Label-Based Distance Calculation

The multiple sparse label-based distance calculation algorithm aims to quantify the
distances between the sparse labels and the points/pixels with propagated labels within
the clusters. By considering all sparse labels within each cluster, the algorithm provides
a comprehensive analysis of the distances between points.

This approach acknowledges the spatial relationships between points/pixels and
assigns higher reliability to propagated labels that are in close proximity to the sparse
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labels. By considering multiple sparse labels within each cluster, the algorithm provides
valuable guidance for accurate labeling.

Algorithm 3 Multiple Sparse Label-Based Distance Calculation

Input: Point cloud data or image data with propagated labels, Sparse labels
Output: Distances between sparse labels and propagated labels

1: for each cluster cl in clusters do
2: for each point/pixel p in cl do
3: Initialize the distance d = 0
4: for each sparseLabel s in cl do
5: Increment the distance d = d + calculateDistance(s, p)
6: end for
7: Calculate the average distance d = d/count(s)
8: end for
9: end for

The Algorithm 3 iterates over each supervoxel in the point cloud and each superpixel
in the image. For each supervoxel or superpixel, it calculates the distance between each
sparse labels and the points/pixels within the corresponding cluster. The distances are
then averaged by dividing the cumulative distance by the number of sparse labels in
the cluster. This ensures that the resulting distances provide a measure of proximity
between the sparse labels and the propagated labels within the cluster.

4.6.1.4 Center Weighted Multiple Sparse Label-Based Distance Calculation

The Center Weighted Multiple Sparse Label-Based Distance Calculation algorithm
is designed to calculate the distances between the sparse labels and the points with
propagated labels within the cluster with an emphasis on weighting the sparse labels
based on the distance to the cluster center. This method combines the principles of
Center-Based Distance Calculation in 4.6.1.1 and Multiple Sparse Label-Based Distance
Calculation in 4.6.1.3. Additionally, it introduces a weighting mechanism based on
the distance of each sparse label to the cluster center. The objective is to assign higher
importance to sparse labels that are closer to the cluster center. The algorithm follows
these steps:

The Algorithm 4 starts by initializing the center of each cluster as the average
coordinates of the points or pixels within the cluster. It calculates the distance of the
sparse label to the cluster center and computes the distance between the point or pixel
and the sparse label. Additionally, it calculates the weight of the sparse label based on
its distance to the cluster center. The weight is determined by the ratio of the distance
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Algorithm 4 Center Weighted Multiple Sparse Label-Based Distance Calculation

Input: Point cloud data or image data with propagated labels, Sparse labels
Output: Distances between propagated labels and sparse labels, Sparse label weights

1: for each cluster cl in clusters do
2: Compute the center c = calculateCenter(cl)
3: Compute the distance fd of furthest point/pixel in cl
4: for each point/pixel p in cl do
5: Initialize the total distance d = 0
6: for each sparse label s in cl do
7: Calculate the distance of s to c, sc = calculateDistance(s, c)
8: Increment the distance d = d + calculateDistance(s, p)
9: Calculate the weight of s, ws = 1 − (sc/fd)

10: end for
11: Calculate the average distance d = d/count(s)
12: end for
13: end for

between the sparse label and the cluster center to the distance of the furthest point
or pixel in the cluster to the cluster center. Finally, the total distance is normalized by
dividing it by the number of sparse labels in the cluster. This normalization ensures a
consistent interpretation of the distances across different supervoxels or superpixels.

The sparse label weights obtained from this algorithm will be used to scale the weight
calculation described in Section 4.6.2. By incorporating the weight mechanism based
on the proximity to the cluster center, the algorithm assigns greater influence to sparse
labels that are closer to the center. This approach enhances the accuracy and reliability
of the previous multiple sparse label-based distance calculation method.

4.6.2 Weighting Algorithms for Confidence Score Assignment

Based on the calculated distances, we employ weighting algorithms to assign confidence
scores to individual points or pixels. Inspired from [112], we assign smaller confidence
scores to examples with greater distances and greater confidence scores to those with
smaller distances. The assigned confidence scores reflect the likelihood of points having
the correct label, facilitating a more informed loss adjustment.

The update equation for the network parameters is given as:

Θt+1 = Θt − η∇
( 1
|Bt| ∑ (x, ȳ) ∈ Btw(x, ȳ)ℓ

(
f (x; Θt), ȳ

))
, (4.9)
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where Bt represents a mini-batch of training examples at iteration t, x is an example
from the mini-batch, ȳ is the corresponding noisy label, and ℓ

(
f (x; Θt), ȳ

)
denotes

the loss function that measures the discrepancy between the predicted output f (x; Θt)

and the noisy label ȳ. The weight w(x, ȳ) is assigned to each example x and its
corresponding noisy label ȳ based on the confidence score assigned to that example.

Based on the distances calculated in section 4.6.1, we introduce three different
weighting algorithms to assign confidence scores to individual points or pixels: linear
weighting, power weighting, and Gaussian weighting.

4.6.2.1 Linear Weighting

The linear weighting algorithm calculates the weights based on the distances between
points within the cluster using the following equation:

w(x, ȳ) = 1 − distance
max(distances)

(4.10)

4.6.2.2 Power Weighting

The power weighting algorithm assigns weights based on a power function applied to
the distances. It calculates the weights using the following equation:

w(x, ȳ) = e−p·distance (4.11)

where p denotes the power factor of the weighting.

4.6.2.3 Gaussian Weighting

The Gaussian weighting algorithm assigns weights based on a Gaussian distribution of
the distances. It calculates the weights using the following equation:

w(x, ȳ) = e−distance (4.12)

These weighting algorithms enable the assignment of confidence scores to individual
points based on their distances within the cluster. The resulting weights can be used
in the update equation for the network parameters, as described earlier, to adjust the
confidence scores and facilitate informed loss adjustment.
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This chapter presents the experimental evaluation of the proposed methodology on
various datasets. It includes comparisons of different methods, analysis of parameter
variations, and the identification of the best-performing combinations.

5.1 Datasets

This study performs experiments on two prominent semantic segmentation datasets:
ScanNetV2 [5] and 2D-3D-S [17]. These datasets are carefully selected to showcase
the proposed methodology and facilitate comparisons with other existing methods.
ScanNetV2 and 2D-3D-S are widely acknowledged benchmarks in the field of 3D
real-world semantic segmentation.

5.1.1 ScanNetV2

ScanNetV2 [5] represents an RGB-D video dataset consisting of 2.5 million views cap-
tured from 1513 distinct scenes. Each scene is meticulously annotated with 3D camera
poses, surface reconstructions, and semantic segmentations. The dataset encompasses a
wide range of indoor environments, including kitchens, dining rooms, and bedrooms,
with 20 semantic labels provided for each scene. A comprehensive annotation effort re-
sulted in 3391 annotation tasks performed on the 1513 scans, which were subsequently
split into 1201 training and 312 validation scans. The richness of annotations and the
diverse nature of ScanNetV2 have positioned it as a widely utilized benchmark in the
field of semantic segmentation.

During our experiments, we preprocess the 3D data by extracting point clouds and
voxelizing them into 3D volumes. For the 2D input, we adopt the approach described
in section 4.2.1 to avoid the additional burden of annotating 2D images. However, it
is important to acknowledge that our baseline architecture, BPNet [85], employs label
images from the ScanNetV2 dataset. These RGB images have undergone additional
filtering and adjustments, resulting in higher quality and less noisy 2D inputs. This
preprocessing step may impact the performance of our model by providing a more
refined and enhanced 2D input representation.

52



5 Experiments and Results

5.1.2 2D-3D-S

The 2D-3D-S dataset [17] represents a collection of large-scale indoor spaces, consisting
of 271 rooms with 13 distinct object categories. This dataset serves as an extension of
the S3DIS dataset [18] and was captured from six expansive indoor areas spanning three
different buildings. Within the 2D-3D-S dataset, various data modalities are provided,
including RGB, depth, and global XYZ OpenEXR images, along with corresponding
3D meshes and point clouds for each indoor space. Notably, the 3D point cloud data
within the 2D-3D-S dataset has also been utilized in the S3DIS dataset.

We specifically chose the 2D-3D-S dataset for our experiments due to the availability
of RGB images. This dataset offers a crucial ingredient for generating such labels,
namely the global XYZ files. These files contain ground truth locations of each image
pixel in the mesh and are stored as 16-bit, 3-channel OpenEXR files. By leveraging
these global XYZ files, we were able to generate accurate 2D image labels from the
corresponding 3D point clouds. To ensure a consistent evaluation, we adhered to the
official train/validation split provided by the dataset. Our annotation efforts focused
on Areas 1, 2, 3, 4, and 6 of the 2D-3D-S dataset, while the performance evaluation was
conducted on Area 5.

5.2 Annotation Details

In this study, we employed various annotation strategies to establish weakly supervised
semantic segmentation settings and obtain training signals with varying levels of
supervision.

1 Labeled Point per Supervoxel strategy: For each computed supervoxel, we ran-
domly select a point and seek a semantic label from the corresponding 3D annotated
point cloud. We made the assumption that semantic annotations within each supervoxel
are clean and consistent, allowing us to consider 1 labeled point in a supervoxel as
equivalent to labeling all points within that supervoxel. This strategy enables us to
compare our results with fully supervised 3D semantic segmentation networks, even
though the supervoxel boundaries may be noisy and the supervoxel labels may have
some inaccuracies. After label expansion, we created a dense setting for evaluation,
facilitating a fair comparison with fully supervised approaches.

Moreover, the "1 labeled point per supervoxel" strategy corresponds to 0.2% supervi-
sion for both the ScanNetV2 [5] and 2D-3D-S [17] datasets.

ScanNetV2 Data Efficient Benchmark [8]: This benchmark is also employed to
compare our method with other studies. It considers four different training configura-
tions on ScanNetV2, including using 20, 50, 100, and 200 labeled points per scene. In
our experiments, we report our results on the most challenging setting with only 20
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annotated points. With 20 labeled points per scene, an annotator only needs to label
the semantic labels for 20 points, significantly reducing the time and cost compared to
fully annotating all points in a room.

Random Point Selection: This approach is established to obtain 0.02% supervision
for both the ScanNetV2 and 2D-3D-S datasets. We sampled 0.02% of the points as
annotated points from the original 3D point cloud and left the rest of the points
unlabeled. Additionally, for the 2D-3D-S dataset, we randomly sampled 20 points from
the original point cloud for our experiments.

5.3 Evaluation Metric

In evaluating the performance of our algorithms on each dataset, we utilize the mIoU
as the primary evaluation metric. The mIoU measures the average IoU for each class,
providing an overall assessment of the segmentation accuracy.

The IoU, also known as the Jaccard index, quantifies the similarity between two sets
by dividing the size of their intersection by the size of their union. It is defined as:

IoU =
TP

TP + FP + FN
(5.1)

Here, TP represents the true positives, FP represents the false positives, and FN
represents the false negatives. In the context of semantic segmentation, TP refers
to the number of correctly predicted foreground pixels, FP refers to the number of
background pixels predicted as foreground, and FN refers to the number of foreground
pixels missed by the model.

To evaluate the segmentation performance of each class, we calculate the IoU score
between the predicted mask and the ground-truth mask for that specific class. If there
are K classes in total, the mIoU is computed as the average of the IoU scores for all
classes:

mIoU =
1
K

K

∑
k=1

IoUk (5.2)

The mIoU serves as a measure of the overall segmentation performance, where a
higher mIoU score indicates better accuracy in distinguishing foreground classes from
the background class. By evaluating the pixelwise similarity between the ground-
truth and predicted segmentation masks, the mIoU metric provides a comprehensive
assessment of the algorithm’s performance or error in semantic segmentation.
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5.4 Implementation Details

The proposed framework is implemented using PyTorch [121], PyTorch Lightning [122],
and the MinkowskiEngine sparse convolution library [21]. The implementation is
trained on two NVIDIA A40 GPUs for a total of 100 epochs.

During training, we set the mini-batch size, base learning rate, momentum, and
weight decay to 16, 0.01, 0.9, and 0.0001, respectively. The stochastic gradient descent
(SGD) [123] optimizer is utilized, and we employ a polynomial learning rate scheduler
with a power of 0.9 to adaptively adjust the learning rate.

For our final model, we select Dice loss [46] as the robust loss function and set the
supervoxel resolution to 0.4 meters using VCCS [28]. We employ the center weighted
multiple sparse label-based distance calculation algorithm with Gaussian weighting for
confidence score assignment.

For the training process, we use the ScanNetV2 [5] and the 2D-3D-S dataset [17]. The
2D UNet [20] component of our framework is initialized with weights pretrained on
ImageNet [124], while the 3D component is initialized from scratch.

The final training objective combines all the individual objectives related to the 2D
and 3D predictions. It can be expressed as:

Ltotal = λ3D(λCE3D LCE3D + λRobust3D LRobust3D) + λ2D(λCE2D LCE2D + λRobust2D LRobust2D)

(5.3)
Here, LCE3D represent the cross-entropy loss for the 3D sparse labels and LRobust3D

represent the robust loss for the propagated supervoxel labels, respectively. Similarly,
LCE2D denote the cross-entropy loss for 2D sparse labels and LRobust2D denotes the
robust loss for the propagated superpixel labels. The parameters λCE3D , λRobust3D ,λCE2D ,
λRobust2D and, λ3D are empirically set to 1, while λ2D is set to 0.1 in our experiments.

5.5 Results

In this section, we will compare our method with existing methods for ScanNetV2 [5],
and 2D-3D-S [17] datasets.

5.5.1 Evaluations on ScanNetV2

Our framework is evaluated on the ScanNetV2 dataset [5] using three weakly-supervised
settings: "1 labeled point per supervoxel," 20 points annotated per scene, and 0.02% of
points annotated in each scene.
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Model Supervision mIoU (%)

PointNet++ [2] 100% 33.9
SPLATNet [125] 100% 39.3
TangentConv [126] 100% 43.8
PointCNN [4] 100% 45.8
3DMV [82] 100% 48.4
FPConv [63] 100% 63.9
PointConv [62] 100% 66.6
KPConv [61] 100% 68.4
MinkowskiNet [21] 100% 73.6
BPNet [85] 100% 74.9
Ours 1 labeled point per supervoxel 67.0

Table 5.1: Quantitative results mIoU(%) of existing methods on the ScanNetV2 [5]
online test set.

We first present the performance of our framework on the ScanNetV2 online test set.
In this evaluation, we compare our proposed approach, trained under the "1 labeled
point per supervoxel" setting, with several state-of-the-art fully supervised methods for
3D semantic segmentation. The results of this comparison are summarized in Table
5.1. Notably, despite the sparse annotation of only 0.2% of the points, our framework
achieves superior performance, surpassing many existing fully supervised approaches.

Next, we analyze the results on the ScanNetV2 validation set, as presented in Table
5.2. In the "1 labeled point per supervoxel" setting, our framework is compared
against the fully supervised MinkowskiNet [21] method. Notably, our framework
demonstrates a 1.0% higher mIoU compared to MinkowskiNet. This improvement can
be attributed to the robustness of our backbone network, which effectively leverages
both 2D and 3D features. Although our results closely align with those of BPNet [85],
the slight performance gap can be attributed to the noisy boundaries generated by
our oversegmentation strategy for supervoxels and superpixels. Additionally, when
comparing our framework to Supervoxel-CNN [84] and BPNet†, we achieve higher
mIoU values by 3.3% and 0.2%, respectively. These results highlight the competitive
performance of our framework even when not all points are annotated.

In the 20 points setting, as defined by the ScanNetV2 Efficient Benchmark [8], our
framework outperforms both BPNet† and OTOC [11]. Specifically, we achieve a 2.43%
higher mIoU compared to BPNet† and a 2.26% higher mIoU compared to OTOC. This
demonstrates the effectiveness of our framework in utilizing the limited supervision of
20 annotated points per scene.
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Model Supervision mIoU (%)

MinkowskiNet [21] 100% 68.0
BPNet [85] 100% 70.6
BPNet [85]† 1 labeled point per supervoxel 68.8
Supervoxel-CNN [84] 1 labeled point per supervoxel 65.7
Ours 1 labeled point per supervoxel 69.0
OTOC [11]∗ 20 points 55.06
BPNet [85]† 20 points 54.89
Ours 20 points 57.32
OTOC [11]∗ 0.02% 62.18
BPNet [85]† 0.02% 57.86
Ours 0.02% 59.20

Table 5.2: mIoU(%) of our results and baselines with diverse supervision on the Scan-
NetV2 dataset [5] validation set. † means the BPNet [85] model trained with
labels propagated on oversegmented point clouds and images. ∗ means
OTOC [11] baseline model trained with the initial pseudo labels.

In the 0.02% points setting, our framework surpasses BPNet† by a 1.34% increase
in mIoU, showcasing the benefits of incorporating robust components to enhance
generalization and performance. However, it is important to note that our framework
is outperformed by OTOC, which achieves a higher mIoU of 2.98%. This performance
difference can be attributed to the utilization of the provided segments in OTOC as
supervoxels, which benefit from a denser coverage in the ScanNetV2 dataset.

To ensure a fair comparison, we consider the methodology employed by OTOC, as
discussed in [9]. OTOC utilizes the provided segments in ScanNetV2 as the basis for
supervoxel partitioning, resulting in pure and consistent labels for the points within
each supervoxel after oversegmentation. Additionally, OTOC determines its labeling
ratio by calculating the number of clicks divided by the total number of raw points. This
approach assumes clean and consistent semantic annotations within each supervoxel,
where a single click per supervoxel is equivalent to labeling all points within that
supervoxel. Consequently, the supervoxel semantic labels utilized by OTOC exhibit
denser coverage in the ScanNetV2 dataset, surpassing the annotation ratio of 0.02%.

In contrast, our approach in the 0.02% point per scene setting follows the methodology
of prior works such as [6] and [7], utilizing the total number of labeled points for
evaluation.
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5.5.2 Evaluations on 2D-3D-S

To further validate the effectiveness of our proposed framework, we conducted evalua-
tions on the 2D-3D-S dataset [17]. We considered two weakly supervised settings: "1
labeled point per supervoxel" and 0.02% supervision. The results of our framework in
these settings are presented in Table 5.3.

In the "1 labeled point per supervoxel" setting, where only a single labeled point
was assigned to each supervoxel (equivalent to 0.2% annotated points), our framework
outperformed several existing fully supervised 3D semantic segmentation networks.
Specifically, our framework surpassed the baseline method BPNet† [85] by 0.52% mIoU.

In the 0.02% supervision setting, our framework demonstrated remarkable perfor-
mance. We outperformed the state-of-the-art OTOC [11] by a substantial margin of
17.02% mIoU. Additionally, our framework surpassed the baseline method BPNet† by
0.08% in the same setting. These results highlight the effectiveness of our proposed
framework in achieving accurate semantic segmentation even with extremely limited
supervision. The evaluation results on the 2D-3D-S dataset provide strong evidence
of the superior performance of our framework compared to existing approaches. Our
framework exhibits robustness and adaptability to different levels of annotation sparsity.

Model Supervision mIoU (%)

PointNet [2] 100% 41.1
SegCloud [3] 100% 48.9
TangentConv [126] 100% 52.8
PointCNN [4] 100% 57.3
SuperpointGraph [100] 100% 58.0
KPConv [61] 100% 67.1
MinkowskiNet [21] 100% 65.4
BPNet [85]† 1 labeled point per supervoxel 64.76
Ours 1 labeled point per supervoxel 65.28
OTOC [11]∗ %0.02 43.07
BPNet [85]† %0.02 60.01
Ours %0.02 60.09

Table 5.3: Quantitative results mIoU(%) of existing methods and baselines with diverse
supervision on the 2D-3D-S [17] Area-5. † means the BPNet [85] model
trained with labels propagated on oversegmented point clouds and images. ∗

means OTOC [11] baseline model trained with the initial pseudo labels.
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5.6 Qualitative Results

In addition to the quantitative evaluation, we present qualitative results of our frame-
work on both the ScanNetV2 [5] and 2D-3D-S [17] datasets, as shown in Figure 5.1 and
Figure 5.2, respectively. Our framework was trained under the "1 labeled point per
supervoxel" supervision and compared against our baseline BPNet [85] trained under
full supervision. The superior segmentation accuracy of our proposed framework is
highlighted by the red bounding boxes in the figures.

Furthermore, our qualitative results demonstrate the robustness of our framework in
handling noisy labels and accurately delineating object boundaries. The segmentation
outputs exhibit clearer and more precise object boundaries compared to the baseline
method. Additionally, our framework successfully captures fine-grained details and
textures in complex scenes, leading to improved semantic segmentation results.

These qualitative results provide visual evidence of the superiority of our proposed
framework in achieving accurate and detailed semantic segmentation results, even with
limited supervision. The visual comparisons against the baseline method validate the
effectiveness and potential of our approach in real-world applications.

5.7 Ablation Studies

To assess the effectiveness of individual modules and analyze the impact of various
design choices on the model’s performance, we conduct extensive ablation studies.
These studies are conducted with the purpose of gaining deeper insights into the
inner workings of our framework and conducting a comprehensive evaluation of its
constituent components. The evaluation process involves using the ScanNetV2 [5]
validation dataset, while the training phase incorporates the ScanNetV2 data efficient
benchmark [8], which includes annotations of 20 points per scene. The results of each
ablation study are presented in terms of mIoU.

5.7.1 Effectiveness of combining 2D and 3D features

To evaluate the effectiveness of incorporating both 2D and 3D features, we conduct
a detailed comparative analysis between two variants of our model. The first variant
employs 2D-3D fusion using the BPNet [85] backbone, while the second variant relies
solely on 3D features and is trained with the MinkowskiNet [21] backbone.

The results presented in Table 5.4 clearly demonstrate the performance advantage
gained by incorporating additional 2D feature information. This advantage can be
attributed to the inherent limitations of 3D data, which often lacks fine texture details
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(a) (b) (c) (d)

Figure 5.1: Qualitative results on ScanNetV2 dataset [5] on validation set. (a) Input
point cloud, (b) Ground truth, (c) BPNet [85] with 100% supervision, (d)
Ours with "1 labeled point per supervoxel" annotation setting. We highlight
the differences between the results of our method and fully supervised
baseline by red boxes.
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(a) (b) (c) (d)

Figure 5.2: Qualitative results on 2D-3D-S [17] Area-5. (a) Input point cloud, (b) Ground
truth, (c) BPNet [85] with 100% supervision, (d) Ours with "1 labeled point
per supervoxel" annotation setting. We highlight the differences between
the results of our method and fully supervised baseline by red boxes.
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necessary for accurate semantic predictions. By integrating high-quality texture infor-
mation extracted from 2D images, our proposed method improves the accuracy and
robustness of semantic predictions, showcasing the effectiveness of utilizing 2D features
to enhance the understanding of 3D models.

Model mIoU (%)

Ours (2D + 3D) 56.23
Ours (3D-only) 53.68

Table 5.4: Comparison of effectiveness of combining 2D and 3D features.

5.7.2 Comparison of Different Robust Losses

In our framework, the selection of a suitable robust loss function is crucial for effectively
handling noisy labels. A robust loss helps improve the generalization capability of our
framework, even in the presence of label noise. Hence, we conduct a comprehensive
analysis to determine the most appropriate robust loss for our system.

As presented in Table 5.5, among the evaluated robust losses, the Dice loss [46]
outperforms the others, achieving a mIoU score of 55.92%. By optimizing the dice loss,
our framework demonstrates improved performance in accurately segmenting objects
with noisy labels.

Robust Losses mIoU (%)

Cross Entropy Loss 54.55
Focal Loss [47] 54.67
Dice Loss [46] 55.92
LovaszSoftmax Loss [120] 55.82
Ohem Loss [119] 55.4
Tversky Loss [48] 54.77
Focal Tversky Loss [118] 55.12

Table 5.5: Comparison of different robust loss functions.

Based on the results, we conclude that the Dice loss is the most suitable robust loss
function for our framework. By addressing class imbalance and emphasizing precise
segmentation boundaries, the Dice loss enhances the accuracy of semantic segmentation,
particularly in the presence of noisy labels.
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5.7.3 Effect of Varying Supervoxel Resolution

It is important to note that the supervoxels generated by VCCS [28] may not accurately
preserve object boundaries. Hence, it is crucial to investigate the impact of different
supervoxel resolutions on the performance of our framework. Finding the optimal
supervoxel resolution that strikes a balance between preserving object boundaries and
capturing smaller structures is of utmost importance.

To evaluate the effect of varying supervoxel resolutions on our framework’s per-
formance, we conduct comprehensive ablation studies using different resolutions, as
illustrated in Figure 5.3. The objective of these ablations is to identify the supervoxel
resolution that yields the best results in terms of preserving object boundaries. The
outcomes of these experiments are summarized in Table 5.6, where it can be observed
that the supervoxel resolution of 0.4 meters achieved the highest mIoU score among
the tested resolutions.

Supervoxel Resolution (meters) mIoU (%)

0.6 56.17
0.4 56.68
0.2 55.92

Table 5.6: Comparison of different supervoxel resolutions.

Analyzing the results, we observe that the use of a 0.6 meter supervoxel resolution
results in a slightly lower mIoU score compared to 0.4 meters. This decrease in
performance can be attributed to the larger size of supervoxels at 0.6 meters. The
larger supervoxels may merge smaller structures, potentially leading to inaccuracies in
preserving object boundaries.

Similarly, the employment of a 0.2 meter supervoxel resolution also exhibits a lower
mIoU score compared to 0.4 meters. This can be attributed to the smaller size of
supervoxels at 0.2 meters, which may accurately capture finer details and boundaries.
However, the smaller supervoxels also increase the likelihood of merging adjacent
structures into separate supervoxels. Consequently, this can result in fragmented object
representations and a decrease in overall performance.

The results from our ablation studies emphasize the significance of selecting an
appropriate supervoxel resolution that strikes a balance between preserving object
boundaries and avoiding the merging of adjacent structures. Based on the experimental
findings, a supervoxel resolution of 0.4 meters demonstrates superior performance,
making it the most suitable choice for our framework.
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(a) 0.6 Voxel size (b) 0.4 Voxel size (c) 0.2 Voxel size

Figure 5.3: Visual comparison of varying supervoxel resolutions.

5.7.4 Impact of Distance Calculation Algorithms

In this section, we investigate the influence of different distance calculation algorithms
on determining the confidence of each point and pixel within a supervoxel and super-
pixel. We explore various approaches to quantify the distance and measure their effect
on performance.

Table 5.7 presents the results of these strategies and highlights the performance
of each distance calculation algorithm. Among the tested approaches, the algorithm
that considers the distance of points and pixels to the center and annotated label
outperforms the others in terms of mIoU score.

Distance Calculation Algorithms mIoU (%)

Center-Based 55.76
Closest Sparse Label to Center-Based 55.92
Multiple Sparse Label-Based 55.89
Center Weighted Multiple Sparse Label-Based 56.4

Table 5.7: Comparison of different distance calculation algorithms.

This outcome suggests that the supervoxels and superpixels derived from overseg-
mented point clouds and pixels often exhibit noisy boundaries. By assigning a higher
confidence to points that are closer to the center and annotated label, our proposed
approach accounts for this noise and improves the accuracy of the corresponding
points.

Analyzing the specific algorithms, we observe that the center-based distance calcula-
tion achieves a mIoU score of 55.76%. Although this approach provides a reasonable
measure, it does not fully capture the information regarding the annotated labels.

The multiple sparse label-based distance calculation achieves a slightly higher mIoU
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score of 55.89%. This approach considers the distance between the annotated label
and the propagated labels, providing a more comprehensive representation of the
supervoxel or superpixel.

Further enhancement is achieved by employing the center weighted multiple sparse
label-based distance calculation, which achieves a mIoU score of 56.4%. This algorithm
assigns a higher weight to the annotated label and accounts for the proximity of points
and pixels to the center.

Lastly, the closest sparse label to center-based distance calculation yields a mIoU
score of 55.92%. Although this algorithm considers the proximity of the cluster center
to the closest annotated label, it does not fully capture the confidence variation within
the supervoxel or superpixel.

The importance of being close to the center in oversegmentation is highlighted by
our findings, as the distance calculation algorithm that incorporates the distance to
the center and annotated label achieves the highest mIoU score. This emphasizes the
significance of points and pixels that are near the representative center, allowing for
improved confidence estimation within the supervoxel or superpixel. By considering
proximity to the center, our algorithm effectively addresses noisy boundaries, resulting
in enhanced performance in 3D semantic segmentation.

5.7.5 Impact of Weighting Algorithms

In this section, we explore different weighting algorithms to assign weights to points
within supervoxels and pixels within superpixels based on their calculated distance
values obtained from the distance calculation algorithm. For power weighting, we set
the power factor, p, to 10. The results are shown in Table 5.8.

Weighting Algorithms mIoU (%)

Linear 55.36
Power 55.24
Gaussian 55.92

Table 5.8: Comparison of different weighting algorithms.

Among the tested algorithms, the Gaussian weighting algorithm demonstrates su-
perior performance, achieving a mIoU score of 55.92%. This algorithm considers the
probabilistic distribution of distances and assigns higher weights to points or pixels with
smaller distances, resulting in improved confidence estimation within the segments.

The linear weighting algorithm, which assigns weights linearly based on distance
values, achieves a mIoU score of 55.36%. While providing a basic weighting mechanism,
it fails to capture confidence variations accurately.
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Similarly, the power weighting algorithm, which applies a power function to distance
values, achieves a slightly lower mIoU score of 55.24%. Although it attempts to
emphasize points or pixels with smaller distances, it tends to be excessively strict in its
weighting scheme.

Based on the results, we conclude that the Gaussian weighting algorithm outperforms
the linear and power weighting algorithms. By considering the probabilistic distribution
of distances, it effectively assigns higher weights to points and pixels with smaller
distance metrics, leading to improved confidence estimation and more accurate semantic
segmentation.

5.7.6 Effect of Oversegmentation Strategy

The boundaries of the generated supervoxels from VCCS [28] may contain noise, which
can result in noisy labels when propagating the labels. In order to evaluate the impact
of noisy boundaries, we compare the results of our framework using supervoxels
generated by VCCS with the ground truth segments provided by the ScanNetV2 [5].

Table 5.9 presents the comparison between our framework’s performance using
the ground truth supervoxels and the supervoxels generated by VCCS. Surprisingly,
despite the presence of noisy boundaries in the supervoxels generated by VCCS, our
framework achieved superior results compared to using the ground truth supervoxels.

Oversegmentation Strategy mIoU (%)

Ours w/ supervoxels provided by ScanNetV2 56.16
Ours w/ supervoxels generated by VCCS 56.23

Table 5.9: Comparison of the effect of oversegmentation strategy.

This suggests that our robust learning framework compensates for the noise intro-
duced by the oversegmentation step. VCCS captures meaningful structures within the
point clouds by leveraging local geometric cues, resulting in a reasonable partitioning
of the data. Although the boundaries may contain noise, the overall partitioning aligns
well with the underlying structures and semantic regions. Additionally, our framework
incorporates robust learning techniques, such as the robust loss functions, which help
mitigate the negative impact of the noisy boundaries and encourage the model to focus
on informative cues within the supervoxels.
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In this thesis, we address the issue of label noise in weakly supervised semantic
segmentation, with a focus on oversegmented point clouds and images with imprecise
object boundaries. The primary objective is to improve label propagation in these noisy
environments, aiming to enhance the robustness of segmentation results.

Recognizing the limitations of fully supervised semantic segmentation, which heavily
relies on extensively annotated datasets, the potential of weakly supervised learning
techniques is explored. We propose a framework that integrates data from both 2D
and 3D domains, leveraging the rich texture and geometric information available.
The supervisory signals are strengthened by grouping points and pixels with similar
attributes, achieved by oversegmenting point clouds and images. Initial labels are
assigned to supervoxels and superpixels using a novel label assignment strategy, and
these labels are propagated to unlabeled points or pixels within the corresponding
regions.

Despite the innovative approach, our framework faces challenges due to imprecise
object boundaries in the oversegmented regions. This leads to inaccuracies in the
propagated labels and the emergence of label noise. To address this, we propose
a novel noise-robust framework that focuses on enhancing the network’s learning
capacity and enabling robust learning with limited annotations. By incorporating
limited supervision, the annotation overhead is reduced, leading to the development of
more efficient methods for robust point cloud semantic segmentation.

A key contribution of this thesis is the development of a robust framework, which
effectively handles label noise in oversegmented point clouds and images. The intro-
duction of novel loss adjustment strategies enables the network to cope with noisy
labels during the training process. Through the assignment of appropriate weights
based on the distance metrics and the incorporation of multi-modality, our framework
exhibits increased resilience against label noise, leading to more reliable and accurate
segmentation results.

Moreover, the integration of robust loss into the framework contributes to improved
learning ability and generalizability. By experimenting with different domain-specific
robust loss functions and selecting the most suitable one, our framework achieves better
alignment with ground truth annotations and improved segmentation accuracy.

Experiments conducted on two large 3D datasets, ScanNetV2 [5], and 2D-3D-S [17],
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demonstrate the superiority of the proposed approach, achieving remarkable results in
3D semantic segmentation with extremely sparse annotations and outperforming the
baselines by a significant margin. However, the proposed methodology faces certain
limitations. The generation of 2D labels directly from sparse point cloud data poses
challenges, leading to lower-quality 2D labels compared to the annotated 2D labels in
the dataset. Additionally, the inherent noise in the generated superpixels and occlusions
results in superpixels without any sparse labels within their regions, adversely affecting
distance calculations for these superpixels.

Our research offers several promising research directions for future work. One po-
tential direction involves exploring different oversegmentation algorithms. Adopting a
differentiable oversegmentation methodology that allows backpropagation can improve
the definition of object boundaries. Another potential area for improvement is the
initial label assignment process. Incorporating all labels within oversegmented re-
gions, instead of relying solely on majority voting, can capture more nuanced semantic
information, enhancing the precision and robustness of semantic segmentation.
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VCCS Voxel Cloud Connectivity Segmentation

SLIC Simple Linear Iterative Clustering

SSN Superpixel Sampling Network

BESS Boundary-Enhanced Supervoxel Segmentation

SSP Supervized SuperPoint

GAN generative adversarial network

RCGAN Robust Conditional GAN

EM expectation-maximization

FCNs Fully Convolutional Networks

MLPs Multi-Layer Perceptrons

LiDAR Light Detection and Ranging

MRI Magnetic Resonance Imaging

COO Coordinate list

CNNs convolutional neural networks

CRF conditional random field
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A-SCN Attentional ShapeContextNet

PATs Point Attention Transformers

GAC Graph Attention Convolution

SSCN Submanifold Sparse Convolutional Networks

D-CNN Depth-aware CNN

MVPNet Multi-View PointNet

BPNet Bidirectional Projection Network

BPM bidirectional projection module

CAM classification activation maps

SEC Seed, Expand, and Constrain

SPN Superpixel Pooling Network

PSD Perturbed self-distillation

WyPR Weakly-supervised framework for Point cloud Recognition

GaIA Graphical information gain-based attention network

OTOC One Thing One Click

OBSNet Observability Network

SLidR Superpixel-driven Lidar Representations

MAE mean absolute error

CCE categorical cross entropy
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CE cross entropy

RCE reverse cross entropy

CT computed tomography

COPLE-Net COVID-19 Pneumonia Lesion segmentation network

GAT Graph Attention Network

GLC Gold Loss Correction

PNAL Point Noise-Adaptive Learning

FPFH Fast Point Feature Histograms

FP false positives

FN false negatives

ROIs regions of interest

OHEM Online Hard Example Mining

IoU Intersection over Union

mIoU Mean Intersection over Union
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